Comparative transcriptome analysis reveals molecular mechanisms of resistance in Chinese cabbage to Plasmodiophora brassicae pathotype 11

被引:1
|
作者
Qiu, Yue [1 ,2 ,3 ]
Zhang, Jinhao [1 ,3 ]
Deng, Chunju [1 ,3 ]
Yuan, Jiasheng [1 ,3 ]
Wang, Bowen [1 ,3 ]
Meng, Han [1 ,3 ]
Mohany, Mohamed [4 ]
Zeng, Liting [1 ,3 ]
Wei, Lanfang [1 ,5 ]
Ahmed, Waqar [6 ]
Ji, Guanghai [1 ,3 ]
机构
[1] Yunnan Agr Univ, State Key Lab Conservat & Utilizat Bioresources Yu, Kunming, Peoples R China
[2] Anshun Univ, Coll Agr, Anshun, Peoples R China
[3] Yunnan Agr Univ, Key Lab Agrobiodivers & Pest Management, Minist Educ, Kunming, Peoples R China
[4] King Saud Univ, Coll Pharm, Dept Pharmacol & Toxicol, Riyadh, Saudi Arabia
[5] Yunnan Agr Univ, Agr Fdn Expt Teaching Ctr, Kunming, Peoples R China
[6] South China Agr Univ, Coll Plant Protect, Guangdong Prov Key Lab Microbial Signals & Dis Con, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
<italic>Plasmodiophora brassicae</italic>; Chinese cabbage; clubroot resistance; transcriptome analysis; defense mechanisms; physiological race; CLUBROOT; HOST; IDENTIFICATION; INFECTION; GENES;
D O I
10.3389/fmicb.2025.1495243
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Background and aims Clubroot caused by the soilborne obligate parasite Plasmodiophora brassicae, is a devastating disease of Chinese cabbage and other crucifers. The innate diversity and adaptability of this pathogen pose significant challenges to effective control measures. However, the varied response mechanisms exhibited by hosts to pathotype 11 at a molecular level are still unclear.Methods and results This study investigated the resistance response and underlying molecular mechanism of two Chinese cabbage (Brassica rapa) varieties (JP and 83-1) to P. brassicae pathotype 11 through comparative transcriptome analysis and microscopic study. Results demonstrated that 14 days after inoculation (dai) is a critical time point of the infection process for resistant variety to inhibit the proliferation of P. brassica. Although the highly resistant variety JP did not exhibit a complete immune response to pathotype 11, it demonstrated a significant resistance level against P. brassicae pathotype 11 by restricting its proliferation in the xylem vessels. Microscopic analysis at 21 dai revealed that the resistant cultivar (JP) root structure remained largely unaffected, while the roots of the susceptible cultivar (83-1) exhibited significant tissue distortion and gall formation, underscoring the effectiveness of the resistance mechanisms. Comparative transcriptome analysis revealed substantial differences in the number and types of differentially expressed genes (DEGs) between the two cultivars, highlighting the key pathways involved in the resistance response. In the resistant cultivar (JP), a total of 9,433 DEGs were identified, with 4,211 up-regulated and 5,222 down-regulated. In contrast, the susceptible cultivar (83-1) exhibited 6,456 DEGs, with 2,781 up-regulated and 3,675 down-regulated. The resistant cultivar showed a pronounced activation of genes involved in hormone signaling, cell wall, secondary metabolism, redox state, and signaling process. Therefore, our speculation revolves around the potential resistant mechanism of this variety, which inhibits the proliferation of P. brassicae in the roots via secondary metabolites, cell wall, and ROS and also regulates physiological mechanisms mediated by plant hormones such as ABA to adapt to adverse environmental conditions such as water scarcity induced by the pathogen.Conclusion This study unveils the intricate defense mechanisms potentially activated within Chinese cabbage when confronted with P. brassicae pathotype 11, offering valuable insights for breeding programs and the development of novel strategies for managing clubroot disease in Brassica crops. Furthermore, this study highlights the pivotal role of host-specific molecular defense mechanisms that underlie resistance to P. brassicae pathotype 11.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A Comparative Transcriptome Analysis Reveals the Molecular Mechanisms That Underlie Somatic Embryogenesis in Peaonia ostii 'Fengdan'
    Ci, Huiting
    Li, Changyue
    Aung, Theint Thinzar
    Wang, Shunli
    Yun, Chen
    Wang, Fang
    Ren, Xiuxia
    Zhang, Xiuxin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (18)
  • [32] Transcriptome Analysis Reveals Association of Photosynthesis and Phytohormone Pathways with Leaf Color in Chinese Cabbage
    Li, Guanghuan
    Liang, Hao
    Ren, Xiaowei
    Ma, Wei
    Lu, Yin
    Zhang, Ziyang
    Wang, Zengfeng
    Zhao, Tiantian
    Zhao, Jianjun
    AGRONOMY-BASEL, 2023, 13 (09):
  • [33] iTRAQ analysis of protein profile during the secondary stage of infection of Plasmodiophora brassicae in Chinese cabbage (Brassica rapa subsp. pekinensis)
    Tongbing Su
    Shuancang Yu
    Weihong Wang
    Peirong Li
    Fenglan Zhang
    Yangjun Yu
    Deshuang Zhang
    Xiuyun Zhao
    Journal of Plant Pathology, 2018, 100 : 533 - 542
  • [34] Comparative transcriptome analysis reveals key genes and pathways in response to Alternaria alternata apple pathotype infection
    Liu, Kai
    Liang, Zhaolin
    Yang, An
    Yan, Jiadi
    Cong, Peihua
    Han, Xiaolei
    Zhang, Caixia
    HORTICULTURAL PLANT JOURNAL, 2024, 10 (03) : 641 - 656
  • [35] Transcriptome Analysis Reveals a Major Gene Expression Pattern and Important Metabolic Pathways in the Control of Heterosis in Chinese Cabbage
    Li, Ru
    Nie, Shanshan
    Zhang, Ning
    Tian, Min
    Zhang, Lugang
    PLANTS-BASEL, 2023, 12 (05):
  • [36] Comparative transcriptome analysis reveals the molecular mechanism of salt tolerance in Apocynum venetum
    Xu, Zongchang
    Wang, Meng
    Ren, Tingting
    Li, Keyang
    Li, Yiqiang
    Marowa, Prince
    Zhang, Chengsheng
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 167 : 816 - 830
  • [37] Genome-wide transcriptome analysis reveals molecular pathways involved in leafy head formation of Chinese cabbage (Brassica rapa)
    Sun, XiaoXue
    Basnet, Ram Kumar
    Yan, Zhichun
    Bucher, Johan
    Cai, Chengcheng
    Zhao, Jianjun
    Bonnema, Guusje
    HORTICULTURE RESEARCH, 2019, 6
  • [38] Transcriptome analysis reveals the molecular mechanisms of neonicotinoid acetamiprid in Leydig cells
    Liu, Xun
    Wang, Ce
    Ma, Yue
    Fu, Linxiang
    Luo, Wanji
    Xu, Changjie
    Tian, Ying
    Ma, Mingyue
    Mao, Yaping
    TOXICOLOGY AND INDUSTRIAL HEALTH, 2025, 41 (02) : 61 - 72
  • [39] Molecular characterization and transcriptome analysis of orange head Chinese cabbage (Brassica rapa L. ssp pekinensis)
    Zhang, Junxiang
    Yuan, Hui
    Fei, Zhangjun
    Pogson, Barry J.
    Zhang, Lugang
    Li, Li
    PLANTA, 2015, 241 (06) : 1381 - 1394
  • [40] Physiological Characterization and Comparative Transcriptome Analysis of a Slow-Growing Reduced-Thylakoid Mutant of Chinese Cabbage (Brassica campestris ssp pekinensis)
    Huang, Shengnan
    Liu, Zhiyong
    Li, Danyang
    Yao, Runpeng
    Hou, Li
    Li, Xiang
    Feng, Hui
    FRONTIERS IN PLANT SCIENCE, 2016, 7