Accelerated prediction of lattice thermal conductivity of Zirconium and its alloys: A machine learning potential method

被引:0
|
作者
Yang, Fan [1 ]
Wang, Di [1 ]
Si, Jiaxuan [1 ,2 ]
Yu, Jianqiao [1 ]
Xie, Zhen [1 ]
Wu, Xiaoyong [3 ]
Wang, Yuexia [1 ]
机构
[1] Fudan Univ, Inst Modern Phys, Key Lab Nucl Phys & Ion Beam Applicat MOE, Shanghai 200433, Peoples R China
[2] Nucl Power Inst China, Sub Inst 1, Chengdu 610005, Peoples R China
[3] Nucl Power Inst China, Sub Inst 4, Chengdu 610005, Peoples R China
基金
中国国家自然科学基金;
关键词
Zr alloy; Lattice thermal conductivity; Machine learning potential; GRADIENT APPROXIMATION;
D O I
10.1016/j.jnucmat.2024.155603
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Zirconium alloy coating is an important direction for the modification of nuclear cladding materials. Thermal conductivity is a critical property of cladding materials. With extensively studying phonon-electron non-equilibrium energy transfer processes in the thermal transport of zirconium alloy coating, to distinguish the contributions from phonon and electron thermal conductivity of Zr alloys becomes crucial and necessary. In this work, we successfully predicted the lattice thermal conductivities of zirconium, Zr-Sn and Zr-Nb using machine learning potentials. Sn and Nb doping leads to a significant decrease in lattice thermal conductivity, which is mainly due to the alterations in phonon group velocity and phonon scattering. The larger atomic mass of doping elements and weakened interatomic interactions of Zr-Nb together lead to a significant decrease in phonon group velocity. Doping Sn and Nb also increases phonon-phonon scattering rate and three-phonon scattering channels, resulting in a shortening in phonon lifetime and a decrease in lattice thermal conductivity.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Lattice Thermal Conductivity: An Accelerated Discovery Guided by Machine Learning
    Jaafreh, Russlan
    Kang, Yoo Seong
    Hamad, Kotiba
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (48) : 57204 - 57213
  • [2] Machine learning models for the lattice thermal conductivity prediction of inorganic materials
    Chen, Lihua
    Huan Tran
    Batra, Rohit
    Kim, Chiho
    Ramprasad, Rampi
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 170
  • [4] PINK: physical-informed machine learning for lattice thermal conductivity
    Liu, Yujie
    Wang, Xiaoying
    Hao, Yuzhou
    Li, Xuejie
    Sun, Jun
    Lookman, Turab
    Ding, Xiangdong
    Gao, Zhibin
    JOURNAL OF MATERIALS INFORMATICS, 2025, 5 (01):
  • [5] Accelerated computation of lattice thermal conductivity using neural network interatomic potentials
    Choi, Jeong Min
    Lee, Kyeongpung
    Kim, Sangtae
    Moon, Minseok
    Jeong, Wonseok
    Han, Seungwu
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 211
  • [6] High throughput combinatorial method for fast and robust prediction of lattice thermal conductivity
    Nath, Pinku
    Plata, Jose J.
    Usanmaz, Demet
    Toher, Cormac
    Fornari, Marco
    Nardelli, Marco Buongiorno
    Curtarolo, Stefano
    SCRIPTA MATERIALIA, 2017, 129 : 88 - 93
  • [7] Machine Learning and First-Principle Predictions of Materials with Low Lattice Thermal Conductivity
    Lin, Chia-Min
    Khatri, Abishek
    Yan, Da
    Chen, Cheng-Chien
    MATERIALS, 2024, 17 (21)
  • [8] Room Temperature Lattice Thermal Conductivity of GeSn Alloys
    Concepcion, Omar
    Tiscareno-Ramirez, Jhonny
    Chimienti, Ada Angela
    Classen, Thomas
    Corley-Wiciak, Agnieszka Anna
    Tomadin, Andrea
    Spirito, Davide
    Pisignano, Dario
    Graziosi, Patrizio
    Ikonic, Zoran
    Zhao, Qing Tai
    Gruetzmacher, Detlev
    Capellini, Giovanni
    Roddaro, Stefano
    Virgilio, Michele
    Buca, Dan
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (10): : 4394 - 4401
  • [9] A review on thermal conductivity of magnesium and its alloys
    Li, Shubo
    Yang, Xinyu
    Hou, Jiangtao
    Du, Wenbo
    JOURNAL OF MAGNESIUM AND ALLOYS, 2020, 8 (01) : 78 - 90
  • [10] Review on Machine Learning Accelerated Crystal Structure Prediction
    Luo X.
    Wang Z.
    Gao P.
    Zhang W.
    Lv J.
    Wang Y.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2023, 51 (02): : 552 - 560