The Unbearable Lightness of Morph Classification

被引:0
作者
John, Vojtech [1 ]
Zabokrtsky, Zdenek [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Inst Formal & Appl Linguist, Malostranske Namesti 25, Prague 11800, Czech Republic
来源
TEXT, SPEECH, AND DIALOGUE, TSD 2023 | 2023年 / 14102卷
关键词
morphology; morphological analysis; morph classification; DeriNet;
D O I
10.1007/978-3-031-40498-6_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In light of the recent push for the creation and unification of large morphologically annotated resources, there is a call for (preferably language-independent, low-resource) methods of morph classification. This paper reports on a pilot experiment on morph classification of the Czech language. We have performed two experiments - root morph recognition and complete morph classification. By exploiting simple quantitative methods and - in some cases - available Czech morphological resources, we have achieved morph-level precision of respectively 96.7% and 88.3%.
引用
收藏
页码:105 / 115
页数:11
相关论文
共 27 条
  • [1] Batsuren K., 2022, UniMorph 4.0: Universal Morphology
  • [2] Batsuren K, 2021, SIGMORPHON 2021: 18TH SIGMORPHON WORKSHOP ON COMPUTATIONAL RESEARCH IN PHONETICS, PHONOLOGY, AND MORPHOLOGY, P39
  • [3] Batsuren Khuyagbaatar, 2022, P 19 SIGMORPHON WORK, P103, DOI DOI 10.18653/V1/2022.SIGMORPHON-1.11
  • [4] Semi-supervised Induction of Morpheme Boundaries in Czech Using a Word-Formation Network
    Bodnar, Jan
    Zabokrtsky, Zdenek
    Sevcikova, Magda
    [J]. TEXT, SPEECH, AND DIALOGUE (TSD 2020), 2020, 12284 : 189 - 196
  • [5] Bolshakova E.I., 2021, AIST 2021, V1086, P45, DOI [10.1007/978-3-030-39575-9_16, DOI 10.1007/978-3-030-39575-9_16]
  • [6] Comrie Bernard, 2008, The Leipzig Glossing rules: Conventions for interlinear morpheme-by-morpheme glosses
  • [7] On the Use of Morpho-Syntactic Description Tags in Neural Machine Translation with Small and Large Training Corpora
    Donaj, Gregor
    Sepesy Maucec, Mirjam
    [J]. MATHEMATICS, 2022, 10 (09)
  • [8] Goldman O., 2022, P 2 WORKSH MULT REPR, P134
  • [9] Unsupervised learning of the morphology of a natural language
    Goldsmith, J
    [J]. COMPUTATIONAL LINGUISTICS, 2001, 27 (02) : 153 - 198
  • [10] Hajic J, 2020, PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), P5208