Randomized signature methods in optimal portfolio selection

被引:0
作者
Akyildirim, Erdinc [1 ,2 ]
Gambara, Matteo [1 ]
Teichmann, Josef [1 ]
Zhou, Syang [1 ]
机构
[1] ETH, Dept Math, Zurich, Switzerland
[2] Univ Nottingham, Business Sch, Nottingham, England
关键词
Machine learning; Randomized signature; Drift estimation; Returns forecast; Portfolio optimization; Path-dependent signal; C21; C22; G11; G14; G17; RISK PARITY; OPTIMIZATION; EQUILIBRIUM; STRATEGIES;
D O I
10.1080/14697688.2025.2458613
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We present convincing empirical results on the application of Randomized Signature Methods for non-linear, non-parametric drift estimation for a multi-variate financial market. Even though drift estimation is notoriously inaccurate due to small signal to noise ratio, one can still try to learn optimal non-linear maps from past data to conditional expectations of future returns for the purposes of portfolio optimization. Randomized Signatures, in contrast to classical signatures, allow for high dimensional markets and provide features on the same scale. We do not contribute to the theory of Randomized Signatures here, but rather present our empirical findings on portfolio selection in real world settings including real market data and transaction costs.
引用
收藏
页码:197 / 216
页数:20
相关论文
共 46 条
  • [1] Akyildirim E, 2022, Arxiv, DOI arXiv:2201.02441
  • [2] In Defense of Portfolio Optimization: What If We Can Forecast?
    Allen, David
    Lizieri, Colin
    Satchell, Stephen
    [J]. FINANCIAL ANALYSTS JOURNAL, 2019, 75 (03) : 20 - 38
  • [3] [Anonymous], 1986, Journal of Soviet Mathematics, DOI DOI 10.1007/BF01085007
  • [4] Factor-based portfolio optimization
    Auh, Jun Kyung
    Cho, Wonho
    [J]. ECONOMICS LETTERS, 2023, 228
  • [5] Least-squares approach to risk parity in portfolio selection
    Bai, Xi
    Scheinberg, Katya
    Tutuncu, Reha
    [J]. QUANTITATIVE FINANCE, 2016, 16 (03) : 357 - 376
  • [6] Machine Learning and Portfolio Optimization
    Ban, Gah-Yi
    El Karoui, Noureddine
    Lim, Andrew E. B.
    [J]. MANAGEMENT SCIENCE, 2018, 64 (03) : 1136 - 1154
  • [7] Combining equilibrium, resampling, and analyst's views in portfolio optimization
    Barros Fernandes, Jose Luiz
    Haas Ornelas, Jose Renato
    Martinez Cusicanqui, Oscar Augusto
    [J]. JOURNAL OF BANKING & FINANCE, 2012, 36 (05) : 1354 - 1361
  • [8] OPTIMAL STOPPING WITH SIGNATURES
    Bayer, Christian
    Hager, Paul P.
    Riedel, Sebastian
    Schoenmakers, John
    [J]. ANNALS OF APPLIED PROBABILITY, 2023, 33 (01) : 238 - 273
  • [9] Black F., 1992, FINANCIAL ANAL J, V48, P28, DOI [10.2469/faj.v48.n5.28, DOI 10.2469/FAJ.V48.N5.28]
  • [10] Bower B., 2011, Sci. News, V179, P26, DOI [DOI 10.1002/SCIN.5591791221, 10.1002/scin.5591791221,arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/scin.5591791221, DOI 10.1002/SCIN.5591791221,ARXIV:HTTPS://ONLINELIBRARY.WILEY.COM/DOI/PDF/10.1002/SCIN.5591791221]