Hyperbolic Volumes of Two Bridge Cone-Manifolds

被引:0
作者
Mednykh, Alexander D. [1 ,2 ]
Qutbaev, Aydos B. [1 ,2 ,3 ]
机构
[1] RAS, Sobolev Inst Math SB, Novosibirsk, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Nukus State Pedag Inst, Nukus, Karakalpakstan, Uzbekistan
来源
BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS | 2025年 / 51卷
关键词
cone-manifold; orbifold; two-bridge knot; volume; geodesic length; PERSONAL ACCOUNT; DISCOVERY;
D O I
10.26516/1997-7670.2025.51.21
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the existence of hyperbolic, Euclidean and spherical structures on cone-manifolds with underlying space 3-sphere and with singular set a given two-bridge knot. For two-bridge knots with 8 crossings we present trigonometric identities involving the length of singular geodesics and cone angles of such cone-manifolds. Then these identities are used to produce exact integral formulae for the volume of the corresponding cone-manifold modeled in the hyperbolic space.
引用
收藏
页码:21 / 33
页数:13
相关论文
共 16 条
[1]  
Abrosimov N, 2019, IRMA LECT MATH THEOR, V29, P151
[2]   Topological invariants of knots and links [J].
Alexander, J. W. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1928, 30 (1-4) :275-306
[3]  
Brin MG, 2013, EXPO MATH, V31, P99, DOI 10.1016/j.exmath.2013.01.002
[4]   PLANE-CURVES ASSOCIATED TO CHARACTER VARIETIES OF 3-MANIFOLDS [J].
COOPER, D ;
CULLER, M ;
GILLET, H ;
LONG, DD ;
SHALEN, PB .
INVENTIONES MATHEMATICAE, 1994, 118 (01) :47-84
[5]  
Cooper D., 2000, Mathematical Society of Japan Memoirs, V5, DOI [10.2969/msjmemoirs/005010000, DOI 10.2969/MSJMEMOIRS/005010000]
[6]  
Derevnin D, 2004, BOL SOC MAT MEX, V10, P129
[7]  
Hilden H.M., 1996, J. Math. Sci. Univ. Tokyo, V3, P723
[8]   ON THE ARITHMETIC 2-BRIDGE KNOTS AND LINK ORBIFOLDS AND A NEW KNOT INVARIANT [J].
HILDEN, HM ;
LOZANO, MT ;
MONTESINOSAMILIBIA, JM .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1995, 4 (01) :81-114
[9]  
katlas, The Knot Atlas
[10]  
Mednykh A., 2006, Tokyo J, Math., V29, P445, DOI DOI 10.3836/TJM/1170348178