Edge Perception Camouflaged Object Detection Under Frequency Domain Reconstruction

被引:0
|
作者
Liu, Zijian [1 ,2 ]
Deng, Xiaoheng [2 ,3 ]
Jiang, Ping [1 ,2 ]
Lv, Conghao [1 ,2 ]
Min, Geyong [4 ]
Wang, Xin [5 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
[2] Shenzhen Res Inst, Shenzhen 518000, Peoples R China
[3] Cent South Univ, Sch Elect Informat, Changsha 410083, Peoples R China
[4] Univ Exeter, Dept Comp Sci, Exeter EX4 4QF, England
[5] Qilu Univ Technol, Shandong Acad Sci, Shandong Comp Sci Ctr, Minist Educ,Key Lab Comp Power Network & Informat, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
Frequency-domain analysis; Image edge detection; Object detection; Image reconstruction; Semantics; Noise; Feature extraction; Camouflaged object detection; salient object detection; frequency domain reconstruction; NETWORK;
D O I
10.1109/TCSVT.2024.3404005
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Camouflaged object detection has been considered a challenging task due to its inherent similarity and interference from background noise. It requires accurate identification of targets that blend seamlessly with the environment at the pixel level. Although existing methods have achieved considerable success, they still face two key problems. The first one is the difficulty in removing texture noise interference and thus obtaining accurate edge and frequency domain information, leading to poor performance when dealing with complex camouflage strategies. The latter is that the fusion of multiple information obtained from auxiliary subtasks is often insufficient, leading to the introduction of new noise. In order to solve the first problem, we propose a frequency domain reconstruction module based on contrast learning, through which we can obtain high-confidence frequency domain components, thus enhancing the model's ability to discriminate target objects. In addition, we design a frequency domain representation decoupling module for solving the second problem to align and fuse features from the RGB domain and the reconstructed frequency domain. This allows us to obtain accurate edge information while resisting noise interference. Experimental results show that our method outperforms 12 state-of-the-art methods in three benchmark camouflaged object detection datasets. In addition, our method shows excellent performance in other downstream tasks such as polyp segmentation, surface defect detection, and transparent object detection.
引用
收藏
页码:10194 / 10207
页数:14
相关论文
共 50 条
  • [1] EPFDNet: Camouflaged object detection with edge perception infrequency domain
    Fang, Xian
    Chen, Jiatong
    Wang, Yaming
    Jiang, Mingfeng
    Ma, Jianhua
    Wang, Xin
    IMAGE AND VISION COMPUTING, 2025, 154
  • [2] Frequency Perception Network for Camouflaged Object Detection
    Cong, Runmin
    Sun, Mengyao
    Zhang, Sanyi
    Zhou, Xiaofei
    Zhang, Wei
    Zhao, Yao
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 1179 - 1189
  • [3] Camouflaged Object Detection with Feature Decomposition and Edge Reconstruction
    He, Chunming
    Li, Kai
    Zhang, Yachao
    Tang, Longxiang
    Zhang, Yulun
    Guo, Zhenhua
    Li, Xiu
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 22046 - 22055
  • [4] Detecting Camouflaged Object in Frequency Domain
    Zhong, Yijie
    Li, Bo
    Tang, Lv
    Kuang, Senyun
    Wu, Shuang
    Ding, Shouhong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 4494 - 4503
  • [5] Camouflaged Object Detection System at the Edge
    Putatunda, Rohan
    Gangopadhyay, Aryya
    Erbacher, Robert F.
    Busart, Carl
    AUTOMATIC TARGET RECOGNITION XXXII, 2022, 12096
  • [6] Camouflaged Object Segmentation Based on Fractional Edge Perception
    Yuan, Xia
    Cui, Junjie
    Liu, Zhengyu
    Yang, Shuting
    Zhang, Xuejian
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XII, 2024, 14436 : 16 - 28
  • [7] Multidimensional fusion of frequency and spatial domain information for enhanced camouflaged object detection
    Wang, Tingran
    Yu, Zaiyang
    Fang, Jianwei
    Xie, Jinlong
    Yang, Feng
    Zhang, Huang
    Zhang, Liping
    Du, Minghua
    Li, Lusi
    Ning, Xin
    INFORMATION FUSION, 2025, 117
  • [8] Frequency Representation Integration for Camouflaged Object Detection
    Xie, Chenxi
    Xia, Changqun
    Yu, Tianshu
    Li, Jia
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 1789 - 1797
  • [9] Frequency-aware Camouflaged Object Detection
    Lin, Jiaying
    Tan, Xin
    Xu, Ke
    Ma, Lizhuang
    Lau, Rynsonw. H.
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (02)
  • [10] Camouflaged Object Detection Based on Ternary Cascade Perception
    Jiang, Xinhao
    Cai, Wei
    Ding, Yao
    Wang, Xin
    Yang, Zhiyong
    Di, Xingyu
    Gao, Weijie
    REMOTE SENSING, 2023, 15 (05)