Mechanistic Insights into the Aerobic Oxidation of 2,5-Bis(hydroxymethyl)furfural to 2,5-Furandicarboxylic Acid on Pd Catalysts

被引:0
|
作者
Yang, Jie [1 ]
Huai, Liyuan [1 ]
Chen, Chunlin [1 ,2 ]
Zhang, Jian [1 ,2 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Biobased Polymer Mat Technol & Applicat Zh, Ningbo 315201, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
palladium; BHMF; aerobic oxidation; positive synergy; theoretical calculation; INITIO MOLECULAR-DYNAMICS; ELASTIC BAND METHOD; ELECTRONIC-STRUCTURE; HYDRIDE; SURFACE; OXYGEN;
D O I
10.1021/acsami.4c20593
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
2,5-Furandicarboxylic acid (FDCA) is one of the top selected value-added chemicals, which can be obtained by the aerobic oxidation of 2,5-bis(hydroxymethyl)furfural (BHMF) over a Pd-based catalyst. However, the elucidation of the reaction mechanism was hindered by its rapid kinetics. Herein, employing the density functional theory (DFT) calculations, we delve into the detailed reaction pathways of the BHMF oxidation into FDCA over Pd(111) and PdH x (111) identifying the rate-determining steps. The results demonstrated that 2,5-diformylfuran (DFF) and 5-formyl-2-furancarboxylic acid (FFCA) are the important intermediates, while the oxidation of FFCA is the rate-limiting step with the energy barrier of 0.68 and 0.51 eV on Pd(111) and PdH1/4(111), respectively. By comparison of the d-band center of Pd(111) and PdH x (111) surfaces and the overall energy barrier of this reaction over these two surfaces, it makes clear that the occupation of H atoms in the Pd bulk changes the surface electronic structures and enhances the binding energy of BHMF with the PdH x surface, which consequently speeds up the conversion of BHMF into FDCA. Water plays a crucial role in facilitating the activation of O2 via the H-transfer by constructing a hydrogen-bonding chain with the O2 and OH*. The activation of molecular oxygen experiences enhancement through the synergy of OH* and H2O, resulting in the production of actomic oxygen (O*). Both O* and OH* actively participate in the BHMF oxidation, where O* improved the activation toward initial critical reaction pathways on Pd(111) while OH* exhibited its pronounced impact on the latter two key processes on both Pd(111) and PdH1/4(111). This study will contribute to well understanding the oxidation mechanism of BHMF into FDCA over Pd-based catalysts and establish a theoretical framework for the potential development of an effective catalyst.
引用
收藏
页码:10168 / 10178
页数:11
相关论文
共 50 条
  • [41] Efficient Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by Magnetic Laccase Catalyst
    Wang, Ke-Feng
    Liu, Chun-lei
    Sui, Kun-yan
    Guo, Chen
    Liu, Chun-Zhao
    CHEMBIOCHEM, 2018, 19 (07) : 654 - 659
  • [42] Convergent production of 2,5-furandicarboxylic acid from biomass and CO2
    Zhou, Hua
    Xu, Huanghui
    Wang, Xueke
    Liu, Yun
    GREEN CHEMISTRY, 2019, 21 (11) : 2923 - 2927
  • [43] Mechanistic kinetic modelling of enzyme-catalysed oxidation reactions of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA)
    Cajnko, Misa Mojca
    Grilc, Miha
    Likozar, Blaz
    CHEMICAL ENGINEERING SCIENCE, 2021, 246
  • [44] 5-Hydroxymethylfurfural Oxidation Over Platinum Supported on Acai Seed Coal for Synthesis of 2,5-Furandicarboxylic Acid
    de Assumpcao, Samira M. N.
    Lima, Sirlene B.
    Silva, Jordan G. A. B.
    Santos, Ronaldo C.
    Campos, Leila M. A.
    Ferreira, Jose M., Jr.
    Trindade, Gustavo F.
    Baker, Mark A.
    Pontes, Luiz A. M.
    BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2022, 12 (05): : 6632 - 6650
  • [45] Diluted oxygen realizes high productivity of 2,5-Furandicarboxylic acid under ambient temperature
    Li, Zhenyu
    Du, Enhui
    Hao, Panpan
    Huai, Liyuan
    Zhong, Yang
    El-Hout, Soliman I.
    Chen, Chunlin
    Zhang, Jian
    CATALYSIS TODAY, 2023, 423
  • [46] NiSX/carbon black hybrids for efficient electrochemical oxidation of 5-hydroxymethyfurfural to 2,5-furandicarboxylic acid
    Yi, Chengfeng
    Li, Jingwen
    Liu, Zhigang
    CATALYSIS TODAY, 2025, 443
  • [47] Reaction Mechanism and Kinetics of the Liquid-Phase Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Chen, Shuaibo
    Guo, Xusheng
    Ban, Heng
    Pan, Teng
    Zheng, Liping
    Cheng, Youwei
    Wang, Lijun
    Li, Xi
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (47) : 16887 - 16898
  • [48] Highly Porous Nitrogen- and Phosphorus-Codoped Graphene: An Outstanding Support for Pd Catalysts to Oxidize 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid
    Chen, Chunlin
    Li, Xingtao
    Wang, Lingchen
    Liang, Ting
    Wang, Lei
    Zhang, Yajie
    Zhang, Jian
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (12): : 11300 - 11306
  • [49] Simulation and economic analysis of 5-hydroxymethylfurfural conversion to 2,5-furandicarboxylic acid
    Triebl, Christoph
    Nikolakis, Vladimiros
    Ierapetritou, Marianthi
    COMPUTERS & CHEMICAL ENGINEERING, 2013, 52 : 26 - 34
  • [50] Current Advances in the Sustainable Conversion of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid
    Totaro, Grazia
    Sisti, Laura
    Marchese, Paola
    Colonna, Martino
    Romano, Angela
    Gioia, Claudio
    Vannini, Micaela
    Celli, Annamaria
    CHEMSUSCHEM, 2022, 15 (13)