A novel spatial-temporal graph convolution network based on temporal embedding graph structure learning for multivariate time series prediction

被引:0
|
作者
Lei, Tianyang [1 ]
Li, Jichao [1 ]
Yang, Kewei [1 ]
Gong, Chang [1 ]
机构
[1] Natl Univ Def Technol, Coll Syst Engn, Changsha 410000, Peoples R China
基金
中国国家自然科学基金;
关键词
Multivariate time series; Graph neural networks; Graph structure learning; Laplacian sharpening; ATTENTION;
D O I
10.1016/j.engappai.2024.109826
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The prediction of multivariate time series is a pivotal research area in data mining, offering extensive practical applications in many real-world scenarios, including transportation, finance, energy systems, the Internet of Things. Accurately predicting multivariate time series is challenging due to the complex temporal and spatial dependencies among variables. To tackle this challenge, this study proposed a deep learning model utilizing graph neural networks for predicting multivariate time series. Specifically, a multivariate time series is modeled as a graph, with nodes representing variables, edges indicating their interdependencies, and the time series data serving as node attributes. We leverage the temporal convolutional network to construct a graph structure learning module that captures the underlying dependencies between variables through the learned adjacency matrix. The prediction model was built by integrating Long Short-Term Memory networks and graph neural networks, enabling the simultaneous capture of temporal and spatial dependencies in multivariate time series data. Additionally, to mitigate the issue of over-smoothing in graph neural networks, we incorporated the Laplacian sharpening technique into our model. The proposed method is generalizable for handling multivariate time series data, as it does not require a pre-defined adjacency matrix among variables. We empirically evaluated the performance of our method through extensive experiments conducted on six real-world datasets, the experimental results indicated that our method could effectively improve the accuracy of multivariate time series prediction.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] An improved dynamic Chebyshev graph convolution network for traffic flow prediction with spatial-temporal attention
    Liao, Lyuchao
    Hu, Zhiyuan
    Zheng, Yuxin
    Bi, Shuoben
    Zou, Fumin
    Qiu, Huai
    Zhang, Maolin
    APPLIED INTELLIGENCE, 2022, 52 (14) : 16104 - 16116
  • [42] Spatial-Temporal Dilated and Graph Convolutional Network for traffic prediction
    Yang, Guoliang
    Wen, Junlin
    Yu, Dinglin
    Zhang, Shuo
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 802 - 806
  • [43] Dynamic Transit Flow Graph Prediction in Spatial-Temporal Network
    Jiang, Liying
    Lai, Yongxuan
    Chen, Quan
    Zeng, Wenhua
    Yang, Fan
    Yi, Fan
    Liao, Qisheng
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2021, PT I, 2021, 13080 : 603 - 618
  • [44] Balanced Spatial-Temporal Graph Structure Learning for Multivariate Time Series Forecasting: A Trade-off between Efficiency and Flexibility
    Chen, Weijun
    Wang, Yanze
    Du, Chengshuo
    Jia, Zhenglong
    Liu, Feng
    Chen, Ran
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 189, 2022, 189
  • [45] Attention spatial-temporal graph neural network for traffic prediction
    Gan P.
    Nong L.
    Zhang W.
    Lin J.
    Wang J.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (01): : 168 - 176
  • [46] Network Filtering of Spatial-temporal GNN for Multivariate Time-series Prediction
    Wang, Yuanrong
    Aste, Tomaso
    3RD ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, ICAIF 2022, 2022, : 463 - 470
  • [47] Multivariate time series prediction of complex systems based on graph neural networks with location embedding graph structure learning
    Shi, Xun
    Hao, Kuangrong
    Chen, Lei
    Wei, Bing
    Liu, Xiaoyan
    ADVANCED ENGINEERING INFORMATICS, 2022, 54
  • [48] Spatial-temporal Cellular Traffic Prediction: A Novel Method Based on Causality and Graph Attention Network
    Chen, Xiangyu
    Chuai, Gang
    Zhang, Kaisa
    Gao, Weidong
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [49] Network-wide Traffic Flow Prediction Research Based on DTW Algorithm Spatial-temporal Graph Convolution
    Liu Y.-C.
    Li Z.-P.
    Lv C.-P.
    Zhang T.
    Liu Y.
    Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Information Technology, 2022, 22 (03): : 147 - 157and178
  • [50] Traffic Flow Prediction Based on Dynamic Graph Spatial-Temporal Neural Network
    Jiang, Ming
    Liu, Zhiwei
    MATHEMATICS, 2023, 11 (11)