Examining the effect of the shear coefficient on the prediction of progressive failure of fiber-reinforced composites

被引:1
|
作者
Wu, Bowen [1 ,2 ]
Chen, Yang [3 ,4 ]
Zhang, Chao [1 ,2 ,3 ,4 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Shaanxi, Peoples R China
[2] Natl Key Lab Strength & Struct Integr, Xian 710072, Shaanxi, Peoples R China
[3] Northwestern Polytech Univ, Sch Civil Aviat, Xian 710072, Shaanxi, Peoples R China
[4] Key Lab Impact Protect & Safety Assessment Civil A, Taicang 215400, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Fiber-reinforced composites; Shear coefficient; Strength prediction; Progressive failure; Analytical model; MECHANICAL-PROPERTIES; DAMAGE SIMULATION; IMPACT DAMAGE; STRENGTH; MODEL; BEHAVIOR; TENSILE; STIFFNESS; STRESS;
D O I
10.1016/j.compstruct.2024.118663
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The ultimate damage of composites under tension usually results from fiber damage, which includes both tensile and shear contributions. In this study, the shear coefficient alpha of the fiber yarn is incorporated into the failure criterion to consider the shear effect of the fiber yarn. An analytical model is then proposed that combines a homogenization method and the enhanced failure criterion to facilitate quick evaluation of the progressive damage and failure of the composite. The sensitivity of alpha on the behaviors of progressive damage and failure are comprehensively explored for different types of fiber-reinforced composites, including a laminate, a plain weave composite, a two-dimensional triaxially braided composite, and a three-dimensional woven composite. The results indicate that damage and failure behaviors are generally sensitive to the shear coefficient, and composites with more complex textile structure demonstrates greater sensitivity to the alpha. An analysis of the sensitivity of alpha for different failure criteria was also conducted, and the results reveal that the Hashin-Hou criterion shows more sensitivity to alpha than the Chang-Chang criterion, the Hoffman criterion, or the Tsai-Wu criterion. Therefore, the identification of the shear coefficient is significant for exploring the damage and failure behaviors of fiber- reinforced composites.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] The effects of wrinkle distributions on the mechanical characteristics of unidirectional glass fiber-reinforced composites
    Li, Xuefeng
    Ge, Jingran
    Chen, Guangchang
    Zhang, Binbin
    Liang, Jun
    COMPOSITES SCIENCE AND TECHNOLOGY, 2024, 256
  • [22] Fatigue life prediction method of carbon fiber-reinforced composites
    Lai, Jiamei
    Xia, Yousheng
    Huang, Zhichao
    Liu, Bangxiong
    Mo, Mingzhi
    Yu, Jiren
    E-POLYMERS, 2024, 24 (01)
  • [23] Stochastic micromechanical damage modeling of progressive fiber breakage for longitudinal fiber-reinforced composites
    Ju, J. W.
    Wu, Y.
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2016, 25 (02) : 203 - 227
  • [24] A numerical prediction of failure probability under combined compression-shear loading for unidirectional fiber reinforced composites
    Safdar, N.
    Daum, B.
    Rolfes, R.
    MECHANICS OF MATERIALS, 2022, 171
  • [25] Micromechanical evaluation of failure models for unidirectional fiber-reinforced composites
    Arefi, Azam
    van der Meer, Frans P.
    Forouzan, Mohammad Reza
    Silani, Mohammad
    Salimi, Mahmoud
    JOURNAL OF COMPOSITE MATERIALS, 2020, 54 (06) : 791 - 800
  • [26] Effect of graphene oxide addition on the interlaminar shear property of carbon fiber-reinforced epoxy composites
    Han, Xiao
    Zhao, Yan
    Sun, Jian-Ming
    Li, Ye
    Zhang, Jin-Dong
    Hao, Yue
    NEW CARBON MATERIALS, 2017, 32 (01) : 48 - 55
  • [27] Valorizing denim and Polyethylene sheet waste to fiber-reinforced composites
    Khan, Raja Muhammad Waseem Ullah
    Seyam, Abdel Fattah M.
    Hussain, Muzzamal
    Nawab, Yasir
    POLYMER COMPOSITES, 2025,
  • [28] Size Effect on Microbond Testing Interfacial Shear Strength of Fiber-Reinforced Composites
    Li, Qiyang
    Nian, Guodong
    Tao, Weiming
    Qu, Shaoxing
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2019, 86 (07):
  • [29] Carbon Fiber-Reinforced Geopolymer Composites: A Review
    Ruzek, Vojtech
    Dostayeva, Ardak Mukhamedievna
    Walter, Janusz
    Grab, Thomas
    Korniejenko, Kinga
    FIBERS, 2023, 11 (02)
  • [30] Strain fields around strain-concentrating features in fiber-reinforced oxide composites
    Samuel, Avery F.
    Christodoulou, Paul G.
    Zok, Frank W.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2020, 103 (03) : 1942 - 1955