Mito-TEMPO Ameliorates Sodium Palmitate Induced Ferroptosis in MIN6 Cells through PINK1/Parkin-Mediated Mitophagy

被引:1
|
作者
Chang, Baolei [1 ,2 ,3 ]
Su, Yanyu [2 ,3 ]
Li, Tingting [2 ,3 ]
Zheng, Yanxia [2 ,3 ]
Yang, Ruirui [2 ,3 ]
Lu, Heng [2 ,3 ]
Wang, Hao [2 ,3 ]
Ding, Yusong [1 ]
机构
[1] Xinjiang Med Univ, Coll Publ Hlth, Urumqi 830011, Xinjiang, Peoples R China
[2] Shihezi Univ, Sch Med, Dept Prevent Med, Shihezi 832003, Xinjiang, Peoples R China
[3] Xinjiang Prod & Construct Corps, Key Lab Prevent & Control Emerging Infect Dis & Pu, Shihezi 832003, Xinjiang, Peoples R China
关键词
MtROS; Ferroptosis; Mitophagy; MIN6; Bioinformatical analysis; Type; 2; diabetes; MITOCHONDRIAL; IRON;
D O I
10.3967/bes2024.111
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Objective Mitochondrial reactive oxygen species (mtROS) could cause damage to pancreatic (3-cells, rendering them susceptible to oxidative damage. Hence, investigating the potential of the mitochondriatargeted antioxidant (Mito-TEMPO) to protect pancreatic (3-cells from ferroptosis by mitigating lipid peroxidation becomes crucial. Methods MIN6 cells were cultured in vitro with 100 mu mol/L sodium palmitate (SP) to simulate diabetes. FerroOrange was utilized for the detection of Fe2+ fluorescence staining, BODIPY581/591C11 for lipid reactive oxygen species, and MitoSox-Red for mtROS. Alterations in mitophagy levels were assessed through the co-localization of lysosomal and mitochondrial fluorescence. Western blotting was employed to quantify protein levels of Acsl4, GPX4, FSP1, FE, PINK1, Parkin, TOMM20, P62, and LC3. Subsequently, interventions were implemented using Mito-TEMPO and Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) to observe changes in ferroptosis and mitophagy within MIN6 cells. Results We found that SP induced a dose-dependent increase in Fe2+ and lipid ROS in MIN6 cells while decreasing the expression levels of GPX4 and FSP1 proteins. Through bioinformatics analysis, it has been uncovered that mitophagy assumes a crucial role within the ferroptosis pathway associated with diabetes. Additionally, SP decreased the expression of mitophagy-related proteins PINK1 and Parkin, leading to mtROS overproduction. Conversely, Mito-TEMPO effectively eliminated mtROS while activating the mitophagy pathways involving PINK1 and Parkin, thereby reducing the occurrence of ferroptosis in MIN6 cells. CCCP also demonstrated efficacy in reducing ferroptosis in MIN6 cells. Conclusion In summary, Mito-TEMPO proved effective in attenuating mtROS production and initiating mitophagy pathways mediated by PINK1 and Parkin in MIN6 cells. Consequently, this decreased iron overload and lipid peroxidation, ultimately safeguarding the cells from ferroptosis.
引用
收藏
页码:1128 / 1141
页数:14
相关论文
共 50 条
  • [11] PINK1/Parkin-mediated mitophagy inhibits warangalone-induced mitochondrial apoptosis in breast cancer cells
    Mao, Lianzhi
    Liu, Huahuan
    Zhang, Rongjun
    Deng, Yudi
    Hao, Yuting
    Liao, Wenzhen
    Yuan, Miaomiao
    Sun, Suxia
    AGING-US, 2021, 13 (09): : 12955 - 12972
  • [12] Salvianolic acid B improves diabetic skin wound repair through Pink1/Parkin-mediated mitophagy
    Zhang, Chunling
    Xiang, Jie
    Wang, Gengxin
    Di, Tietao
    Chen, Lu
    Zhao, Wei
    Wei, Lianggang
    Zhou, Shiyong
    Wu, Xueli
    Zhang, Yun
    Wang, Yanhui
    Liu, Haiyan
    ARCHIVES OF PHYSIOLOGY AND BIOCHEMISTRY, 2025, 131 (01) : 40 - 51
  • [13] Electroacupuncture ameliorates neuronal injury by Pink1/Parkin-mediated mitophagy clearance in cerebral ischemia-reperfusion
    Wang, Huanyuan
    Chen, Suhui
    Zhang, Yamin
    Xu, Hong
    Sun, Hua
    NITRIC OXIDE-BIOLOGY AND CHEMISTRY, 2019, 91 : 23 - 34
  • [14] Silibinin alleviates ferroptosis of rat islet β cell INS-1 induced by the treatment with palmitic acid and high glucose through enhancing PINK1/parkin-mediated mitophagy
    Du, Qingqing
    Wu, Xiaoyun
    Ma, Kai
    Liu, Weiwei
    Liu, Panwen
    Hayashi, Toshihiko
    Mizuno, Kazunori
    Hattori, Shunji
    Fujisaki, Hitomi
    Ikejima, Takashi
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2023, 743
  • [15] PINK1/Parkin-mediated mitophagy mitigates T-2 toxin-induced nephrotoxicity
    Zhang, Xuliang
    Du, Jiayu
    Li, Bo
    Huo, Siming
    Zhang, Jian
    Cui, Yilong
    Song, Miao
    Shao, Bing
    Li, Yanfei
    FOOD AND CHEMICAL TOXICOLOGY, 2022, 164
  • [16] Involvement of PINK1/parkin-mediated mitophagy in ZnO nanoparticle-induced toxicity in BV-2 cells
    Wei, Limin
    Wang, Jianfeng
    Chen, Aijie
    Liu, Jia
    Feng, Xiaoli
    Shao, Longquan
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2017, 12 : 1891 - 1903
  • [17] Pink1/Parkin-mediated mitophagy play a protective role in cisplatin induced renal tubular epithelial cells injury
    Zhao, Chuanyan
    Chen, Zhuyun
    Xu, Xuegiang
    An, Xiaofei
    Duan, Suyan
    Huang, Zhimin
    Zhang, Chengning
    Wu, Lin
    Zhang, Bo
    Zhang, Aihua
    Xing, Changying
    Yuan, Yanggang
    EXPERIMENTAL CELL RESEARCH, 2017, 350 (02) : 390 - 397
  • [18] NEAT1 Confers Radioresistance to Hepatocellular Carcinoma Cells by Inducing PINK1/Parkin-Mediated Mitophagy
    Tsuchiya, Hiroyuki
    Shinonaga, Ririko
    Sakaguchi, Hiromi
    Kitagawa, Yutaka
    Yoshida, Kenji
    Shiota, Goshi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (22)
  • [19] Pterostilbene attenuates oxidative stress induced by hydrogen peroxide in MAC-T cells through activating PINK1/Parkin-mediated mitophagy
    Zhao, Nannan
    Wang, Yuxin
    He, Yu
    Hang, Jiayi
    Wang, Shuai
    Huang, Tianzi
    Sun, Huigang
    Xu, Haixu
    Cui, Jue
    ITALIAN JOURNAL OF ANIMAL SCIENCE, 2024, 23 (01) : 758 - 768
  • [20] PINK1/Parkin-mediated mitophagy was activated against 1,4-Benzoquinoneinduced apoptosis in HL-60 cells
    Zhang, Chunxiao
    Yu, Xiuyuan
    Gao, Jiahao
    Zhang, Qianqian
    Sun, Shuqiang
    Zhu, Hua
    Yang, Xinjun
    Yan, Hongtao
    TOXICOLOGY IN VITRO, 2018, 50 : 217 - 224