Interactive and Supervised Dual-Mode Attention Network for Remote Sensing Image Change Detection

被引:0
|
作者
Ren, Hongjin [1 ]
Xia, Min [1 ]
Weng, Liguo [1 ]
Lin, Haifeng [2 ]
Huang, Junqing [3 ]
Hu, Kai [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Atmospher Environm & Equipm, Nanjing 210044, Peoples R China
[2] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210037, Peoples R China
[3] Macao Polytech Univ, Fac Appl Sci, Macau, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2025年 / 63卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Remote sensing; Accuracy; Semantics; Training; Decoding; Convolutional neural networks; Computational modeling; Spatiotemporal phenomena; Noise; Bitemporal feature interaction; change detection; deep supervision; multiscale fusion; UNSUPERVISED CHANGE DETECTION; BUILDING CHANGE DETECTION; SIAMESE NETWORK; FUSION;
D O I
10.1109/TGRS.2025.3540864
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the rapid advancement of remote sensing technology, change detection using bitemporal remote sensing images has significant applications in land use planning and environmental monitoring. The emergence of convolutional neural networks (CNNs) has accelerated the development of deep learning-based change detection. However, existing deep learning algorithms exhibit limitations in understanding bitemporal feature relationships and accurately identifying change region boundaries. Moreover, they inadequately explore feature interactions between bitemporal images before extracting differential features. To address these issues, this article proposes a novel interactive and supervised dual-mode attention network (ISDANet). In the feature encoding stage, we employ the lightweight MobileNetV2 as the backbone to extract bitemporal features. Additionally, we design the neighbor feature aggregation module (NFAM) to aggregate semantic features from adjacent scales within the dual-branch backbone, enhancing the representation of temporal features. We further introduce the interactive attention enhancement module (IAEM), which effectively integrates self-attention and cross-attention mechanisms. This establishes deep interactions between bitemporal features, suppresses irrelevant noise, and ensures precise focus on true change regions. In the feature decoding stage, the supervised attention module (SAM) reweights differential features and leverages supervisory signals to guide the learning of attention mechanisms, significantly improving boundary detection accuracy. SAM dynamically aggregates multilevel features, balancing high-level semantics and low-level details to capture subtle changes in complex scenes. The proposed model achieves F1 scores that are 0.28%, 1.6%, and 0.76% higher than the best comparative method, spatiotemporal enhancement and interlevel fusion network (SEIFNet), on three CD datasets [LEVIR-CD, Guangzhou dataset (GZ-CD), and Sun Yat-sen University dataset (SYSU-CD)], respectively, while maintaining a lightweight design with only 6.93 M parameters and 3.46G floating-point operations (FLOPs). The code is available at https://github.com/RenHongjin6/ISDANet.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] AMCA: Attention-Guided Multiscale Context Aggregation Network for Remote Sensing Image Change Detection
    Xu, Xintao
    Yang, Zhe
    Li, Jinjiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [22] CSANet: a channel-spatial attention network for remote sensing image change detection
    Cai, Yuyang
    Liao, Shuhong
    He, Wenxuan
    Huang, Weiliang
    Yan, Jingwen
    Liu, Lei
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (19) : 5936 - 5959
  • [23] Dual-Attention-Guided Multiscale Feature Aggregation Network for Remote Sensing Image Change Detection
    Ren, Hongjin
    Xia, Min
    Weng, Liguo
    Hu, Kai
    Lin, Haifeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 4899 - 4916
  • [24] SFEARNet: A Network Combining Semantic Flow and Edge-Aware Refinement for Highly Efficient Remote Sensing Image Change Detection
    Li, Miao
    Ming, Dongping
    Xu, Lu
    Dong, Dehui
    Zhang, Yu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [25] STransUNet: A Siamese TransUNet-Based Remote Sensing Image Change Detection Network
    Yuan, Jian
    Wang, Liejun
    Cheng, Shuli
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 9241 - 9253
  • [26] Semisupervised Adaptive Ladder Network for Remote Sensing Image Change Detection
    Shi, Jiao
    Wu, Tiancheng
    Qin, A. K.
    Lei, Yu
    Jeon, Gwanggil
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [27] SwinSUNet: Pure Transformer Network for Remote Sensing Image Change Detection
    Zhang, Cui
    Wang, Liejun
    Cheng, Shuli
    Li, Yongming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [28] TITAN: A LighTweIght Temporal Attention Network for Remote Sensing Image Change Detection
    Santos, Daniel F. S.
    Papa, Joao P.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [29] Attention-Aware Sobel Graph Convolutional Network for Remote Sensing Image Change Detection
    Wang, Lei
    You, Zhi-Hui
    Lu, Wei
    Chen, Si-Bao
    Tang, Jin
    Luo, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [30] TSMGA: Temporal-Spatial Multiscale Graph Attention Network for Remote Sensing Change Detection
    Zhang, Xiaoyang
    Yuan, Genji
    Hua, Zhen
    Li, Jinjiang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 3696 - 3712