Interactive and Supervised Dual-Mode Attention Network for Remote Sensing Image Change Detection

被引:0
|
作者
Ren, Hongjin [1 ]
Xia, Min [1 ]
Weng, Liguo [1 ]
Lin, Haifeng [2 ]
Huang, Junqing [3 ]
Hu, Kai [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Atmospher Environm & Equipm, Nanjing 210044, Peoples R China
[2] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210037, Peoples R China
[3] Macao Polytech Univ, Fac Appl Sci, Macau, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2025年 / 63卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Remote sensing; Accuracy; Semantics; Training; Decoding; Convolutional neural networks; Computational modeling; Spatiotemporal phenomena; Noise; Bitemporal feature interaction; change detection; deep supervision; multiscale fusion; UNSUPERVISED CHANGE DETECTION; BUILDING CHANGE DETECTION; SIAMESE NETWORK; FUSION;
D O I
10.1109/TGRS.2025.3540864
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the rapid advancement of remote sensing technology, change detection using bitemporal remote sensing images has significant applications in land use planning and environmental monitoring. The emergence of convolutional neural networks (CNNs) has accelerated the development of deep learning-based change detection. However, existing deep learning algorithms exhibit limitations in understanding bitemporal feature relationships and accurately identifying change region boundaries. Moreover, they inadequately explore feature interactions between bitemporal images before extracting differential features. To address these issues, this article proposes a novel interactive and supervised dual-mode attention network (ISDANet). In the feature encoding stage, we employ the lightweight MobileNetV2 as the backbone to extract bitemporal features. Additionally, we design the neighbor feature aggregation module (NFAM) to aggregate semantic features from adjacent scales within the dual-branch backbone, enhancing the representation of temporal features. We further introduce the interactive attention enhancement module (IAEM), which effectively integrates self-attention and cross-attention mechanisms. This establishes deep interactions between bitemporal features, suppresses irrelevant noise, and ensures precise focus on true change regions. In the feature decoding stage, the supervised attention module (SAM) reweights differential features and leverages supervisory signals to guide the learning of attention mechanisms, significantly improving boundary detection accuracy. SAM dynamically aggregates multilevel features, balancing high-level semantics and low-level details to capture subtle changes in complex scenes. The proposed model achieves F1 scores that are 0.28%, 1.6%, and 0.76% higher than the best comparative method, spatiotemporal enhancement and interlevel fusion network (SEIFNet), on three CD datasets [LEVIR-CD, Guangzhou dataset (GZ-CD), and Sun Yat-sen University dataset (SYSU-CD)], respectively, while maintaining a lightweight design with only 6.93 M parameters and 3.46G floating-point operations (FLOPs). The code is available at https://github.com/RenHongjin6/ISDANet.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Spatial Focused Bitemporal Interactive Network for Remote Sensing Image Change Detection
    Sun, Hang
    Yao, Yuan
    Zhang, Lefei
    Ren, Dong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [2] Prior Guidance and Principal Attention Network for Remote Sensing Image Change Detection
    Shu, Qing-Ling
    Chen, Si-Bao
    You, Zhi-Hui
    Tang, Jin
    Luo, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [3] Remote Sensing Image Change Detection Transformer Network Based on Dual-Feature Mixed Attention
    Song, Xinyang
    Hua, Zhen
    Li, Jinjiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] Change-Aware Cascaded Dual-Decoder Network for Remote Sensing Image Change Detection
    Yang, Feng
    Yuan, Yifeng
    Qin, Anyong
    Zhao, Yue
    Song, Tiecheng
    Gao, Chenqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [5] Progressive Refinement Network for Remote Sensing Image Change Detection
    Xu, Xinghan
    Liang, Yi
    Liu, Jianwei
    Zhang, Chengkun
    Wang, Deyi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [6] Attention Filtering Network Based on Branch Transformer for Change Detection in Remote Sensing Images
    Yu, Shangguan
    Li, Jinjiang
    Liu, Yepeng
    Fan, Zhang
    Zhang, Caiming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 19
  • [7] Semantic-Explicit Filtering Network for Remote Sensing Image Change Detection
    Li, Shuying
    Ren, Chao
    Qin, Yuemei
    Li, Qiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [8] LHDACT: Lightweight Hybrid Dual Attention CNN and Transformer Network for Remote Sensing Image Change Detection
    Song, Xinyang
    Hua, Zhen
    Li, Jinjiang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [9] SIAM-CDNET: A Remote Sensing Image Change Detection Network for Optimized Edge Detection and Mitigation of Pseudo Changes
    Zhang, Yuanjian
    Xue, Wenqi
    IEEE ACCESS, 2024, 12 : 120672 - 120686
  • [10] SASiamNet: Self-Adaptive Siamese Network for Change Detection of Remote Sensing Image
    Long, Xianxuan
    Zhuang, Wei
    Xia, Min
    Hu, Kai
    Lin, Haifeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 1021 - 1034