Interactive and Supervised Dual-Mode Attention Network for Remote Sensing Image Change Detection

被引:3
作者
Ren, Hongjin [1 ]
Xia, Min [1 ]
Weng, Liguo [1 ]
Lin, Haifeng [2 ]
Huang, Junqing [3 ]
Hu, Kai [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Atmospher Environm & Equipm, Nanjing 210044, Peoples R China
[2] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210037, Peoples R China
[3] Macao Polytech Univ, Fac Appl Sci, Macau, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2025年 / 63卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Remote sensing; Accuracy; Semantics; Training; Decoding; Convolutional neural networks; Computational modeling; Spatiotemporal phenomena; Noise; Bitemporal feature interaction; change detection; deep supervision; multiscale fusion; UNSUPERVISED CHANGE DETECTION; BUILDING CHANGE DETECTION; SIAMESE NETWORK; FUSION;
D O I
10.1109/TGRS.2025.3540864
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the rapid advancement of remote sensing technology, change detection using bitemporal remote sensing images has significant applications in land use planning and environmental monitoring. The emergence of convolutional neural networks (CNNs) has accelerated the development of deep learning-based change detection. However, existing deep learning algorithms exhibit limitations in understanding bitemporal feature relationships and accurately identifying change region boundaries. Moreover, they inadequately explore feature interactions between bitemporal images before extracting differential features. To address these issues, this article proposes a novel interactive and supervised dual-mode attention network (ISDANet). In the feature encoding stage, we employ the lightweight MobileNetV2 as the backbone to extract bitemporal features. Additionally, we design the neighbor feature aggregation module (NFAM) to aggregate semantic features from adjacent scales within the dual-branch backbone, enhancing the representation of temporal features. We further introduce the interactive attention enhancement module (IAEM), which effectively integrates self-attention and cross-attention mechanisms. This establishes deep interactions between bitemporal features, suppresses irrelevant noise, and ensures precise focus on true change regions. In the feature decoding stage, the supervised attention module (SAM) reweights differential features and leverages supervisory signals to guide the learning of attention mechanisms, significantly improving boundary detection accuracy. SAM dynamically aggregates multilevel features, balancing high-level semantics and low-level details to capture subtle changes in complex scenes. The proposed model achieves F1 scores that are 0.28%, 1.6%, and 0.76% higher than the best comparative method, spatiotemporal enhancement and interlevel fusion network (SEIFNet), on three CD datasets [LEVIR-CD, Guangzhou dataset (GZ-CD), and Sun Yat-sen University dataset (SYSU-CD)], respectively, while maintaining a lightweight design with only 6.93 M parameters and 3.46G floating-point operations (FLOPs). The code is available at https://github.com/RenHongjin6/ISDANet.
引用
收藏
页数:18
相关论文
共 79 条
[1]   A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain [J].
Bovolo, Francesca ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (01) :218-236
[2]  
Carion N, 2020, Img Proc Comp Vis Re, V12346, P213, DOI 10.1007/978-3-030-58452-8_13
[3]   Remote Sensing Image Change Detection With Transformers [J].
Chen, Hao ;
Qi, Zipeng ;
Shi, Zhenwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[4]   A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection [J].
Chen, Hao ;
Shi, Zhenwei .
REMOTE SENSING, 2020, 12 (10)
[5]  
Chen K., 2023, IEEE Trans. Geosci. Remote Sens.
[6]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[7]   DBFGAN: Dual Branch Feature Guided Aggregation Network for remote sensing image [J].
Chu, Shengguang ;
Li, Peng ;
Xia, Min ;
Lin, Haifeng ;
Qian, Ming ;
Zhang, Yonghong .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 116
[8]   Multiscale Location Attention Network for Building and Water Segmentation of Remote Sensing Image [J].
Dai, Xin ;
Xia, Min ;
Weng, Liguo ;
Hu, Kai ;
Lin, Haifeng ;
Qian, Ming .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[9]  
Daudt RC, 2018, IEEE IMAGE PROC, P4063, DOI 10.1109/ICIP.2018.8451652
[10]   Fusion of Difference Images for Change Detection Over Urban Areas [J].
Du, Peijun ;
Liu, Sicong ;
Gamba, Paolo ;
Tan, Kun ;
Xia, Junshi .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (04) :1076-1086