Infinity norm bounds for the inverse of Quasi-SDDk SDD k matrices with applications

被引:0
|
作者
Li, Qin [1 ]
Ran, Wenwen [1 ]
Wang, Feng [1 ]
机构
[1] Guizhou Minzu Univ, Coll Data Sci & Informat Engn, Guiyang 550025, Guizhou, Peoples R China
关键词
Infinity norm bounds; Error bounds; Linear complementarity problems; QSDD(k) matrices; H-matrices; LINEAR COMPLEMENTARITY-PROBLEMS; ERROR-BOUNDS;
D O I
10.1007/s11075-024-01949-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a new subclass of H-matrices named Quasi-SDDk (for shortly, QSDDk) matrices, present some properties of QSDD(k) k matrices, and discuss the relationship among QSDD(k) matrices and other subclasses of H-matrices. Moreover, the infinity norm bounds for the inverse of Q SDDk matrices and error bounds for the linear complementarity problems of QSDD(k) matrices are given, which improve some existing results. Numerical examples are given to illustrate the validity of new results.
引用
收藏
页数:25
相关论文
共 25 条
  • [1] Infinity norm bounds for the inverse of generalized SDD2 matrices with applications
    Li, Qin
    Ran, Wenwen
    Wang, Feng
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2024, 41 (03) : 1477 - 1500
  • [2] Infinity Norm Bounds for the Inverse of SDD1-Type Matrices with Applications
    Geng, Yuanjie
    Zhu, Yuxue
    Zhang, Fude
    Wang, Feng
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2025,
  • [3] Infinity norm bounds for the inverse of S DD+1 matrices with applications
    Liu, Lanlan
    Zhu, Yuxue
    Wang, Feng
    Geng, Yuanjie
    AIMS MATHEMATICS, 2024, 9 (08): : 21294 - 21320
  • [4] Infinity norm bounds for the inverse of Nekrasov matrices using scaling matrices
    Orera, H.
    Pena, J. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 358 : 119 - 127
  • [5] Schur Complement-Based Infinity Norm Bounds for the Inverse of SDD Matrices
    Li, Chaoqian
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (05) : 3829 - 3845
  • [6] Infinity norm bounds for the inverse for GSDD1 matrices using scaling matrices
    Dai, Ping-Fan
    Li, Jinping
    Zhao, Shaoyu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (03)
  • [7] An infinity norm bound for the inverse of strong SDD1 matrices with applications
    Wang, Yinghua
    Song, Xinnian
    Gao, Lei
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (02) : 1287 - 1304
  • [8] Upper triangulation-based infinity norm bounds for the inverse of Nekrasov matrices with applications
    Gao, Lei
    Gu, Xian-Ming
    Jia, Xiudan
    Li, Chaoqian
    NUMERICAL ALGORITHMS, 2024, 97 (04) : 1453 - 1479
  • [9] An infinity norm bound for the inverse of Dashnic-Zusmanovich type matrices with applications
    Li, Chaoqian
    Cvetkovic, Ljiljana
    Wei, Yimin
    Zhao, Jianxing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 565 : 99 - 122
  • [10] NEW UPPER BOUNDS FOR THE INFINITY NORM OF NEKRASOV MATRICES
    Gao, Lei
    Liu, Qilong
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (03): : 723 - 733