Application of nonparametric approach to extreme value inference in distribution estimation of sample maximum and its properties

被引:0
|
作者
Moriyama, T. [1 ,2 ]
机构
[1] Yokohama City Univ, Sch Data Sci, Yokohama, Japan
[2] Tottori Univ, Dept Management Social Syst & Civil Engn, Tottori, Japan
关键词
extreme value; kernel-type estimator; mean squared error; nonparametric estimation; KERNEL DENSITY-ESTIMATION; MAX-SEMISTABLE LAWS; LIKELIHOOD ESTIMATORS; CONVERGENCE; STATISTICS; PARAMETERS; REGRESSION; RATES;
D O I
10.1111/anzs.12436
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Extreme value theory has constructed asymptotic properties of the sample maximum. This article concerns probability distribution estimation of the sample maximum. The traditional approach is parametric fitting to the limiting distribution-the generalised extreme value distribution; however, the model in non-limiting cases is misspecified to a certain extent. We propose a plug-in type of nonparametric estimator that does not need model specification. Asymptotic properties of the distribution estimator are derived. The simulation study numerically investigates the relative performance in finite-sample cases. This study assumes that the underlying distribution of the original sample belongs to one of the Hall class, the Weibull class or the bounded class, whose types of the limiting distributions are all different: the Fr & eacute;chet, Gumbel or Weibull. It is proven that the convergence rate of the parametric fitting estimator depends on both the extreme value index and the second-order parameter, and gets slower as the extreme value index tends to zero. On the other hand, the rate of the nonparametric estimator is proven to be independent of the extreme value index under certain conditions. The numerical performances of the parametric fitting estimator and the nonparametric estimator are compared, which shows that the nonparametric estimator performs better, especially for the extreme value index close to zero. Finally, we report two real case studies: the Potomac River peak stream flow (cfs) data and the Danish Fire Insurance data.
引用
收藏
页码:51 / 76
页数:26
相关论文
共 50 条
  • [1] Nonparametric estimation of the spectral measure of an extreme value distribution
    Einmahl, JHJ
    De Haan, L
    Piterbarg, VI
    ANNALS OF STATISTICS, 2001, 29 (05) : 1401 - 1423
  • [2] MULTIMODEL APPROACH TO ESTIMATION OF EXTREME VALUE DISTRIBUTION QUANTILES
    Bogdanowicz, Ewa
    HYDROLOGIA W INZYNIERII I GOSPODARCE WODNEJ, VOL 1, 2010, (68): : 57 - 70
  • [3] A nonparametric estimation procedure for bivariate extreme value copulas
    Caperaa, P
    Fougeres, AL
    Genest, C
    BIOMETRIKA, 1997, 84 (03) : 567 - 577
  • [4] TIME-VARIANT NONPARAMETRIC EXTREME QUANTILE ESTIMATION WITH APPLICATION TO US TEMPERATURE DATA
    Chowdhury, Mohammed
    Gadidov, Bogdan
    Le, Linh
    Wang, Yan
    VanBrackle, Lewis
    SOUTH AFRICAN STATISTICAL JOURNAL, 2021, 55 (02) : 87 - 108
  • [5] Nonparametric Estimation of Extreme Quantiles with an Application to Longevity Risk
    Bolance, Catalina
    Guillen, Montserrat
    RISKS, 2021, 9 (04)
  • [6] Estimation of a Bivariate Extreme Value Distribution
    Philippe Capéraà
    Anne-Laure Fougères
    Extremes, 2000, 3 (4) : 311 - 329
  • [7] Bayesian inference on extreme value distribution using upper record values
    Seo, Jung In
    Kim, Yongku
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (15) : 7751 - 7768
  • [8] A SIMPLE NONPARAMETRIC APPROACH FOR ESTIMATION AND INFERENCE OF CONDITIONAL QUANTILE FUNCTIONS
    Fang, Zheng
    Li, Qi
    Yan, Karen X.
    ECONOMETRIC THEORY, 2023, 39 (02) : 290 - 320
  • [9] Using B-splines for nonparametric inference on bivariate extreme-value copulas
    Cormier, Eric
    Genest, Christian
    Neslehova, Johanna G.
    EXTREMES, 2014, 17 (04) : 633 - 659
  • [10] Using B-splines for nonparametric inference on bivariate extreme-value copulas
    Eric Cormier
    Christian Genest
    Johanna G. Nešlehová
    Extremes, 2014, 17 : 633 - 659