Disentangled feature graph for Hierarchical Text Classification

被引:0
|
作者
Liu, Renyuan [1 ]
Zhang, Xuejie [1 ]
Wang, Jin [1 ]
Zhou, Xiaobing [1 ]
机构
[1] Yunnan Univ, Sch Informat Sci & Engn, Kunming 650500, Yunnan, Peoples R China
关键词
Feature disentanglement; Hierarchical Text Classification; Task conflicts and dependencies;
D O I
10.1016/j.ipm.2025.104065
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Effectively utilizing the hierarchical relationship among labels is the core of Hierarchical Text Classification (HTC). Previous research on HTC has tended to enhance the dependencies between labels. However, they overlook some labels that may conflict with other labels because alleviating label conflicts also weakens label dependencies and reduces the model performance. Therefore, this paper focuses on the issue of label conflicts and studies methods to alleviate label conflicts without affecting the mutual support relationship between labels. To solve the abovementioned problem, we first use the feature disentanglement method to cut off all label connections. Then, the connection among labels is selectively established by constructing a hierarchical graph on disentangled features. Finally, the Graph Neural Networks (GNN) is adopted to encode the obtained Disentanglement Feature Graph (DFG) and enables only labels with connections to support each other, while labels without connections do not interfere with each other. The experimental results on the WOS, RCV1-v2, and BGC datasets show the effectiveness of DFG. In detail, the experimental results show that on the WOS dataset, the model incorporating DFG achieved a 1.07% improvement in Macro-F1, surpassing the best model by 0.27%. On the RCV1-v2 dataset, the model incorporating DFG achieved a 0.95% improvement in Micro-F1, surpassing the best model by 0.21%. On the BGC dataset, the model incorporating DFG achieved a 1.81% improvement in Micro-F1, surpassing the best model by 0.45%.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] COPHTC: CONTRASTIVE LEARNING WITH PROMPT TUNING FOR HIERARCHICAL TEXT CLASSIFICATION
    Cai, Fuhan
    Zhang, Zhongqiang
    Liu, Duo
    Fang, Xiangzhong
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 5400 - 5404
  • [22] LEARNING DISENTANGLED FEATURE REPRESENTATIONS FOR ANOMALY DETECTION
    Lee, Wei-Yu
    Wang, Yu-Chiang Frank
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2156 - 2160
  • [23] HLC: hierarchically-aware label correlation for hierarchical text classification
    Kumar, Ashish
    Toshinwal, Durga
    APPLIED INTELLIGENCE, 2024, 54 (02) : 1602 - 1618
  • [24] HLC: hierarchically-aware label correlation for hierarchical text classification
    Ashish Kumar
    Durga Toshinwal
    Applied Intelligence, 2024, 54 : 1602 - 1618
  • [25] Adaptive Hierarchical Text Classification Using ERNIE and Dynamic Threshold Pruning
    Chen, Han
    Zhang, Yangsen
    Jiang, Yuru
    Duan, Ruixue
    IEEE ACCESS, 2024, 12 : 193641 - 193652
  • [26] Hierarchy-Aware and Label Balanced Model for Hierarchical Text Classification
    Zhang, Jun
    Li, Yubin
    Shen, Fanfan
    Xia, Chenxi
    Tan, Hai
    He, Yanxiang
    KNOWLEDGE-BASED SYSTEMS, 2024, 300
  • [27] Utilizing global and path information with language modelling for hierarchical text classification
    Oh, Heung-Seon
    Myaeng, Sung-Hyon
    JOURNAL OF INFORMATION SCIENCE, 2014, 40 (02) : 127 - 145
  • [28] A Study on Hierarchical Text Classification as a Seq2seq Task
    Torba, Fatos
    Gravier, Christophe
    Laclau, Charlotte
    Kammoun, Abderrhammen
    Subercaze, Julien
    ADVANCES IN INFORMATION RETRIEVAL, ECIR 2024, PT III, 2024, 14610 : 287 - 296
  • [29] HTCSI: A Hierarchical Text Classification Method Based on Selection-Inference
    Xu, Yiming
    Feng, Jianzhou
    Gu, Chenghan
    Qin, Haonan
    Xue, Kehan
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, PT II, NLPCC 2024, 2025, 15360 : 307 - 318
  • [30] A Category Hybrid Embedding Based Approach for Power Text Hierarchical Classification
    Chen X.
    Gao P.
    Liang Y.
    Ma Y.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58 (01): : 77 - 82