Intrinsic Hölder spaces for fractional kinetic operators

被引:0
作者
Manfredini, Maria [1 ]
Pagliarani, Stefano [2 ]
Polidoro, Sergio [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matematiche, Modena, Italy
[2] Univ Bologna, Dipartimento Matemat, Bologna, Italy
关键词
Fractional kinetic operators; Taylor formula; Kolmogorov operators; H & ouml; rmander's condition; lder spaces; TAYLOR FORMULA;
D O I
10.1007/s00028-025-01062-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce anisotropic H & ouml;lder spaces that are useful for studying the regularity theory for non-local kinetic operators L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {L}$$\end{document}, whose prototypical example is Lu(t,x,v)=integral RdCd,s|v-v '|d+2s(u(t,x,v ')-u(t,x,v))dv '+< v,del x >+partial derivative t,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathscr {L}u (t,x,v) = \int _{{{\mathbb {R}}}<^>d} \frac{C_{d,s}}{|v - v'|<^>{d+2s}} (u(t,x,v') - u(t,x,v)) \textrm{d}v' + \langle v, \nabla _x \rangle + \partial _t, \end{aligned}$$\end{document}with (t,x,v)is an element of RxR2d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(t,x,v)\in {{\mathbb {R}}}\times {{\mathbb {R}}}<^>{2d}$$\end{document}. The H & ouml;lder spaces are defined in terms of an anisotropic distance relevant to the Galilean geometric structure on RxR2d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}\times {{\mathbb {R}}}<^>{2d}$$\end{document}, with respect to which the operator L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {L}$$\end{document} is invariant. We prove an intrinsic Taylor-like formula, whose remainder is bounded in terms of the anisotropic distance of the Galilean structure. Our achievements naturally extend analogous known results for purely differential operators on Lie groups.
引用
收藏
页数:22
相关论文
共 17 条
  • [1] Anceschi F., 2023, arXiv
  • [2] A SURVEY ON THE CLASSICAL THEORY FOR KOLMOGOROV EQUATION
    Anceschi, Francesca
    Polidoro, Sergio
    [J]. MATEMATICHE, 2020, 75 (01): : 221 - 258
  • [3] Arena G, 2010, REV MAT IBEROAM, V26, P239
  • [4] Auscher P, 2024, Arxiv, DOI arXiv:2403.17464
  • [5] Taylor formula for homogenous groups and applications
    Bonfiglioli, Andrea
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2009, 262 (02) : 255 - 279
  • [6] Imbert C., 2021, Ann. H. Lebesgue, V4, P369, DOI [https://doi.org/10.5802/ahl.75, DOI 10.5802/AHL.75]
  • [7] THE SCHAUDER ESTIMATE FOR KINETIC INTEGRAL EQUATIONS
    Imbert, Cyril
    Silvestre, Luis
    [J]. ANALYSIS & PDE, 2021, 14 (01): : 171 - 204
  • [8] Regularity for the Boltzmann equation conditional to macroscopic bounds
    Imbert, Cyril
    Silvestre, Luis
    [J]. EMS SURVEYS IN MATHEMATICAL SCIENCES, 2020, 7 (01) : 117 - 172
  • [9] Lanconelli E., 1994, Rend. Sem. Mat. Univ. Politec. Torino, V52, P29
  • [10] Langevin P, 1908, CR HEBD ACAD SCI, V146, P530