Deep learning pathways for automatic sign language processing

被引:0
|
作者
Toshpulatov, Mukhiddin [1 ,3 ]
Lee, Wookey [1 ]
Jun, Jaesung [1 ]
Lee, Suan [2 ]
机构
[1] Inha Univ, Dept Ind & Biomed Sci Engn, 100 Inha Ro, Incheon 22212, South Korea
[2] Semyung Univ, Sch Comp Sci, 65 Semyung Ro, Jecheon 27136, South Korea
[3] Korea Adv Inst Sci & Technol, SpaceTop Res Ctr, 291 Deahak Ro, Daejeon 34141, South Korea
关键词
Sign language; Sign language processing; Sign language recognition; Sign language translation; Sign language production; Sign language dataset;
D O I
10.1016/j.patcog.2025.111475
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study provides a comprehensive review of the current state of the sign language processing (SLP) field, encompassing sign language recognition (SLR), translation (SLT), production (SLPn), and the associated datasets (SLD). It analyzes the advancements and challenges in each area, highlighting key methodologies and technologies. The authors explore feature extraction techniques, model architectures, and multimodal data integration in SLR. For SLT, they examine neural machine translation and sequence-to-sequence frameworks, emphasizing the need for context-aware systems. In SLPn, they review avatar-based systems and motion capture techniques, identifying gaps in generating natural and expressive sign language. The survey of SLD evaluates existing datasets and underscores the importance of comprehensive data collection. It also discusses current SLP systems' limitations and proposes future research directions to enhance accuracy, naturalness, and user-centric applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] RECOGNITION OF SIGN LANGUAGE GESTURES USING DEEP LEARNING
    Manoj, R.
    Karthick, R. E.
    Priyadharshini, Indira R.
    Renuka, G.
    Monica
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (05) : 508 - 516
  • [22] Deep Learning Methods for Indian Sign Language Recognition
    Likhar, Pratik
    Bhagat, Neel Kamal
    Rathna, G. N.
    2020 IEEE 10TH INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE-BERLIN), 2020,
  • [23] Isolated Sign Language Recognition Using Deep Learning
    Das, Sukanya
    Yadav, Sumit Kumar
    Samanta, Debasis
    COMPUTER VISION AND IMAGE PROCESSING, CVIP 2023, PT I, 2024, 2009 : 343 - 356
  • [24] An Intelligent Android System for Automatic Sign Language Recognition and Learning
    Shaban, Soha A.
    Elsheweikh, Dalia L.
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2024, 15 (08) : 923 - 940
  • [25] Efficient Sign Language Recognition System and Dataset Creation Method Based on Deep Learning and Image Processing
    Cavalcante Carneiro, A. L.
    Silva, L. Brito
    Pinheiro Salvadeo, D. H.
    THIRTEENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2021), 2021, 11878
  • [26] Sign Language Processing
    Carreiras, Manuel
    LANGUAGE AND LINGUISTICS COMPASS, 2010, 4 (07): : 430 - 444
  • [27] Deep Learning Methods in Natural Language Processing
    Flores, Alexis Stalin Alulema
    APPLIED TECHNOLOGIES (ICAT 2019), PT II, 2020, 1194 : 92 - 107
  • [28] Deep Learning on Graphs for Natural Language Processing
    Wu, Lingfei
    Chen, Yu
    Ji, Heng
    Liu, Bang
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 4084 - 4085
  • [29] Deep Learning for Natural Language Processing: A Survey
    Arkhangelskaya E.O.
    Nikolenko S.I.
    Journal of Mathematical Sciences, 2023, 273 (4) : 533 - 582
  • [30] Deep Learning Techniques for Natural Language Processing
    Rodzin, Sergey
    Bova, Victoria
    Kravchenko, Yury
    Rodzina, Lada
    ARTIFICIAL INTELLIGENCE TRENDS IN SYSTEMS, VOL 2, 2022, 502 : 121 - 130