Deep learning pathways for automatic sign language processing

被引:0
|
作者
Toshpulatov, Mukhiddin [1 ,3 ]
Lee, Wookey [1 ]
Jun, Jaesung [1 ]
Lee, Suan [2 ]
机构
[1] Inha Univ, Dept Ind & Biomed Sci Engn, 100 Inha Ro, Incheon 22212, South Korea
[2] Semyung Univ, Sch Comp Sci, 65 Semyung Ro, Jecheon 27136, South Korea
[3] Korea Adv Inst Sci & Technol, SpaceTop Res Ctr, 291 Deahak Ro, Daejeon 34141, South Korea
关键词
Sign language; Sign language processing; Sign language recognition; Sign language translation; Sign language production; Sign language dataset;
D O I
10.1016/j.patcog.2025.111475
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study provides a comprehensive review of the current state of the sign language processing (SLP) field, encompassing sign language recognition (SLR), translation (SLT), production (SLPn), and the associated datasets (SLD). It analyzes the advancements and challenges in each area, highlighting key methodologies and technologies. The authors explore feature extraction techniques, model architectures, and multimodal data integration in SLR. For SLT, they examine neural machine translation and sequence-to-sequence frameworks, emphasizing the need for context-aware systems. In SLPn, they review avatar-based systems and motion capture techniques, identifying gaps in generating natural and expressive sign language. The survey of SLD evaluates existing datasets and underscores the importance of comprehensive data collection. It also discusses current SLP systems' limitations and proposes future research directions to enhance accuracy, naturalness, and user-centric applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A review of deep learning-based approaches to sign language processing
    Tan, Sihan
    Khan, Nabeela
    An, Zhaoyi
    Ando, Yoshitaka
    Kawakami, Rei
    Nakadai, Kazuhiro
    Advanced Robotics, 2024, 38 (23) : 1649 - 1667
  • [2] Detection of Turkish Sign Language Using Deep Learning and Image Processing Methods
    Aksoy, Bekir
    Salman, Osamah Khaled Musleh
    Ekrem, Ozge
    APPLIED ARTIFICIAL INTELLIGENCE, 2021, 35 (12) : 952 - 981
  • [3] Indian Sign Language Gesture Recognition using Image Processing and Deep Learning
    Bhagat, Neel Kamal
    Vishnusai, Y.
    Rathna, G. N.
    2019 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2019, : 61 - 68
  • [4] Sign Language Recognition Using Deep Learning
    Ray, Anushka
    Syed, Shahbaz
    Poornima, S.
    Pushpalatha, M.
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 : 421 - 428
  • [5] Deep Learning of Mouth Shapes for Sign Language
    Koller, Oscar
    Ney, Hermann
    Bowden, Richard
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, : 477 - 483
  • [6] Deep Learning Methods for Sign Language Translation
    Ananthanarayana, Tejaswini
    Srivastava, Priyanshu
    Chintha, Akash
    Santha, Akhil
    Landy, Brian
    Panaro, Joseph
    Webster, Andre
    Kotecha, Nikunj
    Sah, Shagan
    Sarchet, Thomastine
    Ptucha, Raymond
    Nwogu, Ifeoma
    ACM TRANSACTIONS ON ACCESSIBLE COMPUTING, 2021, 14 (04)
  • [7] LEARNING MOTION DISFLUENCIES FOR AUTOMATIC SIGN LANGUAGE SEGMENTATION
    Farag, Iva
    Brock, Heike
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7360 - 7364
  • [8] Deep learning of the natural language processing
    Allauzen, Alexandre
    Schuetze, Hinrich
    TRAITEMENT AUTOMATIQUE DES LANGUES, 2018, 59 (02): : 7 - 14
  • [9] Deep Learning in Natural Language Processing
    Feng, Haoda
    Shi, Feng
    NATURAL LANGUAGE ENGINEERING, 2021, 27 (03) : 373 - 375
  • [10] Automatic Generation of E-Learning Contents Based on Deep Learning and Natural Language Processing Techniques
    Wang, Yiyi
    Okamura, Koji
    ADVANCES IN INTERNET, DATA AND WEB TECHNOLOGIES (EIDWT 2020), 2020, 47 : 311 - 322