On Small Deviations of Gaussian Multiplicative Chaos with A Strictly Logarithmic Covariance on Euclidean Ball

被引:0
|
作者
Talarczyk, Anna [1 ]
Wisniewolski, Maciej [1 ]
机构
[1] Warsaw Univ, Inst Math, Banacha 2, PL-02097 Warsaw, Poland
关键词
Gaussian multiplicative chaos; Small deviations; Logarithmic potential; Positive definiteness; Laplace transforms;
D O I
10.1007/s11118-025-10197-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the elementary and self-contained study we prove that in any natural spatial dimension d the small deviations of a Gaussian multiplicative chaos (GMC) M gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\gamma $$\end{document} are of lognormal type. We place the small deviations in the context of the regime of positive definiteness for a strictly logarithmic covariance kernel and provide the explicit bounds on the associated constants. We also provide a new representation of the Laplace transform of GMC related to a strictly logarithmic covariance kernel.
引用
收藏
页数:25
相关论文
共 2 条