Methane Column Estimation Using PRISMA Hyperspectral Data and Comparison With Other Earth Observation Products

被引:0
作者
Settembre, Daniele [1 ]
De Santis, Davide [1 ]
Schiavon, Giovanni [1 ]
Del Frate, Fabio [1 ]
机构
[1] Tor Vergata Univ Rome, Civil Engn & Comp Sci Engn Dept, I-00133 Rome, Italy
关键词
GHGSat; hyperspectral data; landfill; matched filter with Albedo correction and reweiGhted L1 sparsity code (MAG1C); methane emissions; petrochemical plants; PRISMA; TROPOspheric Monitoring Instrument (TROPOMI); CLIMATE;
D O I
10.1109/LGRS.2025.3539870
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Our work investigates the potential of high-resolution hyperspectral satellite data for detecting atmospheric methane concentrations. We employ the matched filter with Albedo correction and reweiGhted L1 sparsity Code (MAG1C) algorithm, which integrates a sparsity prior, a matched filter, and albedo correction techniques. For the analysis, we utilize hyperspectral data from the PRISMA mission, leveraging its high spatial resolution to potentially enable more accurate localization of point emission sources. Comparing the methane column estimation resulting from our work with corresponding products provided by both the Sentinel-5P and GHGsat missions, a good agreement was found. In particular, a bias of 5 ppb with respect to the methane abundance estimated from GHGsat was reached.
引用
收藏
页数:5
相关论文
共 46 条
  • [31] Comparison of Tree Typologies Mapping Using Random Forest Classifier Algorithm of PRISMA and Sentinel-2 Products in Different Areas of Central Italy
    Caputi, Eros
    Delogu, Gabriele
    Patriarca, Alessio
    Perretta, Miriam
    Mancini, Giulia
    Boccia, Lorenzo
    Recanatesi, Fabio
    Ripa, Maria Nicolina
    REMOTE SENSING, 2025, 17 (03)
  • [32] Mapping the invasive palm species Arenga obtusifolia using multiple endmember spectral mixture analysis (MESMA) and PRISMA hyperspectral data in Ujung Kulon National Park, Indonesia
    Damarjati, Safri
    Nugraha, Wahyu Ananta
    Arjasakusuma, Sanjiwana
    GEOCARTO INTERNATIONAL, 2022, 37 (27) : 18254 - 18274
  • [33] Estimating spatio-temporal air temperature in London (UK) using machine learning and earth observation satellite data
    dos Santos, Rochelle Schneider
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 88
  • [34] Estimation of Bathymetry and Benthic Habitat Composition from Hyperspectral Remote Sensing Data (BIODIVERSITY) Using a Semi-Analytical Approach
    Minghelli, Audrey
    Vadakke-Chanat, Sayoob
    Chami, Malik
    Guillaume, Mireille
    Migne, Emmanuelle
    Grillas, Patrick
    Boutron, Olivier
    REMOTE SENSING, 2021, 13 (10)
  • [35] Comparison of various approaches for estimating leaf water content and stomatal conductance in different plant species using hyperspectral data
    Zhang, Yuan
    Wu, Jiabing
    Wang, Anzhi
    ECOLOGICAL INDICATORS, 2022, 142
  • [36] Estimation of Benthic Microalgae Chlorophyll-a Concentration in Mudflat Surfaces of Geunso Bay Using Ground-based Hyperspectral Data
    Koh, Sooyoon
    Noh, Jaehoon
    Baek, Seungil
    Lee, Howon
    Won, Jongseok
    Kim, Wonkook
    KOREAN JOURNAL OF REMOTE SENSING, 2021, 37 (05) : 1111 - 1124
  • [37] Total column water vapor estimation over land using radiometer data from SAC-D/Aquarius
    Epeloa, Javier
    Meza, Amalia
    ADVANCES IN SPACE RESEARCH, 2018, 61 (04) : 1025 - 1034
  • [38] Using out-of-sample yield forecast experiments to evaluate which earth observation products best indicate end of season maize yields
    Davenport, Frank M.
    Harrison, Laura
    Shukla, Shraddhanand
    Husak, Greg
    Funk, Chris
    McNally, Amy
    ENVIRONMENTAL RESEARCH LETTERS, 2019, 14 (12)
  • [39] Comparison of partial least squares and support vector regressions for predicting leaf area index on a tropical grassland using hyperspectral data
    Kiala, Zolo
    Odindi, John
    Mutanga, Onisimo
    Peerbhay, Kabir
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [40] Leaf Nitrogen and Phosphorus Variation and Estimation of Citrus Tree under Two Labor-Saving Cultivation Modes Using Hyperspectral Data
    Li, Dasui
    Hu, Qingqing
    Zhang, Jinzhi
    Dian, Yuanyong
    Hu, Chungen
    Zhou, Jingjing
    REMOTE SENSING, 2024, 16 (17)