Janus Gel Electrolyte Enabled High-Performance Quasi-Solid-State Electrochromic Zn-Ion Batteries

被引:0
|
作者
Chen, Hua [1 ]
Fang, Pengda [1 ]
Yang, Mingchen [1 ]
Yu, Jiangtao [1 ]
Ma, Xinyu [1 ]
Hu, Yin [1 ]
Yan, Feng [1 ,2 ]
机构
[1] Soochow Univ, Jiangsu Key Lab Adv Negat Carbon Technol, Coll Chem Chem Engn & Mat Sci, Jiangsu Engn Lab Novel Funct Polymer Mat,Coll Chem, Suzhou 215123, Peoples R China
[2] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
来源
ACS APPLIED POLYMER MATERIALS | 2025年 / 7卷 / 06期
基金
中国国家自然科学基金;
关键词
Janus gel; quasi-solid-state electrolyte; electrochromic; Zn-ion batteries; energy storage; dendritesuppression; ENERGY-STORAGE;
D O I
10.1021/acsapm.4c03987
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rechargeable electrochromic Zn-ion batteries (RZEBs) which combine electrochromic properties with energy storage capabilities, represent a promising development in the field of transparent batteries. The aqueous electrolytes are crucial for enhancing the kinetics and capacity of the cathode in RZEBs. However, the Zn anode suffers from hydrogen evolution reaction (HER), dendrite growth, and formation of byproducts due to excess water. Herein, we designed an integrated Janus gel electrolyte by incorporating a propylene carbonate-based organogel with a hydrogel electrolyte. The Janus gel electrolyte not only facilitates efficient Zn insertion in the cathode with short self-coloring time and good cyclic stability but also effectively mitigates water-induced corrosion in the Zn anode. Specifically, the Zn//Cu batteries exhibit a high Coulombic efficiency of 97.91%. Furthermore, the Zn//WO3 batteries exhibit a specific capacity of 43.64 mA h g-1 with a capacity retention of 60.84% after 160 cycles. This work provides an effective electrolyte design that significantly enhances the cycle stability of RZEBs.
引用
收藏
页码:3718 / 3727
页数:10
相关论文
共 50 条
  • [31] Hydrated Eutectic Electrolyte Induced Bilayer Interphase for High-Performance Aqueous Zn-Ion Batteries with 100 °C Wide-Temperature Range
    Wan, Jiandong
    Wang, Rui
    Liu, Zixiang
    Zhang, Shilin
    Hao, Junnan
    Mao, Jianfeng
    Li, Hongbao
    Chao, Dongliang
    Zhang, Longhai
    Zhang, Chaofeng
    ADVANCED MATERIALS, 2024, 36 (11)
  • [32] Design of Palygorskite-based Quasi-solid-state electrolyte and Construction of Stable Electrode/Electrolyte Interface for High Cycling Stability Aqueous Zinc-ion Batteries
    Zhang, Zhuo
    Wang, Haiyan
    Yang, Kuo
    Zhang, Feifei
    Li, Ye
    Xue, Bing
    Gu, Xiaopeng
    APPLIED CLAY SCIENCE, 2025, 265
  • [33] Ionic Liquid (IL) Laden Metal-Organic Framework (IL-MOF) Electrolyte for Quasi-Solid-State Sodium Batteries
    Yu, Xingwen
    Grundish, Nicholas S.
    Goodenough, John B.
    Manthiram, Arumugam
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (21) : 24662 - 24669
  • [34] Flexible Quasi-Solid-State High-Performance Aqueous Zinc Ion Hybrid Supercapacitor with Water-in-Salt Hydrogel Electrolyte and N/P-Dual Doped Graphene Hydrogel Electrodes
    Deng, Yongqi
    Wang, Hongfei
    Zhang, Kefu
    Qiu, Jun
    Yan, Lifeng
    ADVANCED SUSTAINABLE SYSTEMS, 2022, 6 (01):
  • [35] Enthalpy-Driven Molecular Engineering Enables High-Performance Quasi-Solid-State Electrolytes for Long Life Lithium Metal Batteries
    Wang, Zilong
    Shen, Longyun
    Ma, Yilin
    Law, Ho Mei
    Xu, Shengjun
    Bi, Yixin
    Robson, Matthew J.
    Wang, Yuhao
    Groeschel, Andre
    Chen, Qing
    Ciucci, Francesco
    ADVANCED MATERIALS, 2025,
  • [36] In Situ Synthesis of a Hierarchical All-Solid-State Electrolyte Based on Nitrile Materials for High-Performance Lithium-Ion Batteries
    Zhou, Dong
    He, Yan-Bing
    Liu, Ruliang
    Liu, Ming
    Du, Hongda
    Li, Baohua
    Cai, Qiang
    Yang, Quan-Hong
    Kang, Feiyu
    ADVANCED ENERGY MATERIALS, 2015, 5 (15)
  • [37] Novel gel polymer electrolyte for high-performance lithium-sulfur batteries
    Liu, Ming
    Zhou, Dong
    He, Yan-Bing
    Fu, Yongzhu
    Qin, Xianying
    Miao, Cui
    Du, Hongda
    Li, Baohua
    Yang, Quan-Hong
    Lin, Zhiqun
    Zhao, T. S.
    Kang, Feiyu
    NANO ENERGY, 2016, 22 : 278 - 289
  • [38] Unleashing the Full Potential of Electrochromic Heterostructured Nickel-Cobalt Phosphate for Optically Active High-Performance Asymmetric Quasi-Solid-State Supercapacitor Devices
    Ghanem, Loujain G.
    Taha, Manar M.
    Shaheen, Basamat S.
    Allam, Nageh K.
    ACS APPLIED MATERIALS & INTERFACES, 2023,
  • [39] CuMnO2 nanosheets for high performance aqueous Zn-ion batteries
    Cheng, Cuixia
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [40] Lignocellulose-derived hydrogel/aerogel-based flexible quasi-solid-state supercapacitors with high-performance: a review
    Gu, Peng
    Liu, Wei
    Hou, Qingxi
    Ni, Yonghao
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (25) : 14233 - 14264