Mechanical and Thermal Properties of 3D-Printed Continuous Bamboo Fiber-Reinforced PE Composites

被引:0
|
作者
Qiao, Haiyu [1 ]
Li, Qian [1 ]
Chen, Yani [1 ]
Liu, Yayun [1 ]
Jiang, Ning [1 ]
Wang, Chuanyang [1 ]
机构
[1] Soochow Univ, Sch Mech & Elect Engn, Suzhou 215000, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
continuous natural fiber; bamboo fiber; 3D print; fiber-plastic interface; mechanical properties; thermal properties; EXTRUSION;
D O I
10.3390/ma18030593
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Continuous fibers with outstanding mechanical performance due to the continuous enhancement effect, show wide application in aerospace, automobile, and construction. There has been great success in developing continuous synthetic fiber-reinforced composites, such as carbon fibers or glass fibers; however, most of which are nonrenewable, have a high processing cost, and energy consumption. Bio-sourced materials with high reinforced effects are attractive alternatives to achieve a low-carbon footprint. In this study, continuous bamboo fiber-reinforced polyethylene (CBF/PE) composites were prepared via a facile two-step method featuring alkali treatment followed by 3D printing. Alkali treatment as a key processing step increases surface area and surface wetting, which promote the formation of mechanical riveting among bamboo fibers and matrix. The obtained treated CBF (T-CBF) also shows improved mechanical properties, which enables a superior reinforcement effect. 3D printing, as a fast and local heating method, could melt the outer layer PE tube and impregnate molten plastics into fibers under pressure and heating. The resulting T-CBF/PE composite fibers can achieve a tensile strength of up to 15.6 MPa, while the matrix PE itself has a tensile strength of around 7.7 MPa. Additionally, the fracture morphology of printed bulks from composite fibers shows the alkali-treated fibers-PE interface is denser and could transfer more load. The printed bulks using T-CBF/PE shows increased tensile strength and Young's modulus, with 77%- and 1.76-times improvement compared to pure PE. Finally, the effect of printing paraments on mechanical properties were analyzed. Therefore, this research presents a potential avenue for fabricating continuous natural fiber-reinforced composites.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Study on the mechanical and durability properties of 3D-printed bamboo fiber-reinforced concrete
    Si, Qi
    Zhang, Wenna
    Pan, Zhihong
    Zheng, Jianqiang
    Yu, Chaomin
    Zhang, Guohe
    CONSTRUCTION AND BUILDING MATERIALS, 2025, 478
  • [2] Tensile Performance of 3D-Printed Continuous Fiber-Reinforced Nylon Composites
    Mohammadizadeh, Mahdi
    Fidan, Ismail
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2021, 5 (03):
  • [3] Quantifying the influence of reinforcement architecture on the planar mechanical properties of 3D-printed continuous fiber-reinforced thermoplastic composites
    De la Fuente, Andres
    Castillo, Rodrigo
    Onate, Angelo
    Hermosilla, Rodolfo
    Escudero, Benjamin
    Sepulveda, Joaquin
    Vargas-Silva, Gustavo
    Melendrez, Manuel F.
    Tuninetti, Victor
    Medina, Carlos
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 127 (3-4) : 1575 - 1583
  • [4] Thermal and mechanical properties of bamboo fiber reinforced composites
    Chin, Siew Choo
    Tee, Kong Fah
    Tong, Foo Sheng
    Ong, Huei Ruey
    Gimbun, Jolius
    MATERIALS TODAY COMMUNICATIONS, 2020, 23 (23)
  • [5] Quantifying the influence of reinforcement architecture on the planar mechanical properties of 3D-printed continuous fiber-reinforced thermoplastic composites
    Andrés De la Fuente
    Rodrigo Castillo
    Angelo Oñate
    Rodolfo Hermosilla
    Benjamín Escudero
    Joaquín Sepúlveda
    Gustavo Vargas-Silva
    Manuel F. Meléndrez
    Víctor Tuninetti
    Carlos Medina
    The International Journal of Advanced Manufacturing Technology, 2023, 127 : 1575 - 1583
  • [6] Topology optimization of 3D-printed continuous fiber-reinforced composites considering manufacturability
    Yang, Zhe
    Fu, Kunkun
    Zhang, Zhongsen
    Zhang, Junming
    Li, Yan
    COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 230
  • [7] Mechanical Properties of 3D-Printed Carbon Fiber-Reinforced Cement Mortar
    Li, Yeou-Fong
    Tsai, Pei-Jen
    Syu, Jin-Yuan
    Lok, Man-Hoi
    Chen, Huei-Shiung
    FIBERS, 2023, 11 (12)
  • [8] Properties of 3D-Printed Polymer Fiber-Reinforced Mortars: A Review
    Liu, Jie
    Lv, Chun
    POLYMERS, 2022, 14 (07)
  • [9] Mechanical properties of continuous bamboo fiber-reinforced biobased polyamide 11 composites
    Haddou, Geoffrey
    Dandurand, Jany
    Dantras, Eric
    Huynh Maiduc
    Hoang Thai
    Nguyen Vu Giang
    Tran Huu Trung
    Ponteins, Philippe
    Lacabanne, Colette
    JOURNAL OF APPLIED POLYMER SCIENCE, 2019, 136 (23)
  • [10] Thermal conductivity of 3D-printed continuous pitch carbon fiber composites
    Olcun, Sinan
    Ibrahim, Yehia
    Isaacs, Caleb
    Karam, Mohamed
    Elkholy, Ahmed
    Kempers, Roger
    ADDITIVE MANUFACTURING LETTERS, 2023, 4