Helicobacter Pylori Infection as the Predominant High-Risk Factor for Gastric Cancer Recurrence Post-Gastrectomy: An 8-Year Multicenter Retrospective Study

被引:0
作者
Liu, Yuan [1 ,2 ]
Shang, Xingchen [1 ]
Du, Wenyi [1 ]
Shen, Wei [1 ]
Zhu, Yanfei [1 ]
机构
[1] Nanjing Med Univ, Wuxi Med Ctr, Dept Gen Surg, Wuxi, Peoples R China
[2] Jining Med Coll, Tengzhou Cent Peoples Hosp, Dept Gen Surg, Jining, Shandong, Peoples R China
来源
INTERNATIONAL JOURNAL OF GENERAL MEDICINE | 2024年 / 17卷
关键词
gastric tumor; gastrectomy; helicobacter pylori; immunotherapy; risk factor; machine learning; SERUM CARCINOEMBRYONIC ANTIGEN; RESECTION;
D O I
10.2147/IJGM.S485347
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose: The reappearance of gastric cancer, a frequent postoperative complication following radical gastric cancer surgery, substantially impacts the near-term and far-reaching medical outlook of patients. The objective of this research was to create a machine learning algorithm that could recognize high-risk factors for gastric cancer recurrence and anticipate the correlation between gastric cancer recurrence and Helicobacter pylori (H. pylori) infection. Patients and Methods: This investigation comprised 1234 patients diagnosed with gastric cancer, and 37 characteristic variables were obtained. Four machine learning algorithms, namely, extreme gradient boosting (XGBoost), random forest (RF), k-nearest neighbor algorithm (KNN), and multilayer perceptron (MLP), were implemented to develop the models. The k-fold cross-validation technique was utilized to perform internal validation of the four models, while independent datasets were employed for external validation of the models. Results: In contrast to the other machine learning models, the XGBoost algorithm demonstrated superior predictive ability regarding high-risk factors for gastric cancer recurrence. The outcomes of Shapley additive explanation (SHAP) analysis revealed that tumor invasion depth, tumor lymph node metastasis, H. pylori infection, postoperative carcinoembryonic antigen (CEA), tumor size, and tumor number were risk elements for gastric cancer recurrence in patients, with H. pylori infection being the primary high-risk factor. Conclusion: Out of the four machine learning models, the XGBoost algorithm exhibited superior performance in predicting the recurrence of gastric cancer. In addition, machine learning models can help clinicians identify key prognostic factors that are clinically meaningful for the application of personalized patient monitoring and immunotherapy.
引用
收藏
页码:4999 / 5014
页数:16
相关论文
共 44 条
[1]   The Association of Helicobacter pylori, Eradication, and Early Complications of Laparoscopic Sleeve Gastrectomy [J].
Abu Abeid, Adam ;
Abu Abeid, Subhi ;
Nizri, Eran ;
Kuriansky, Joseph ;
Lahat, Guy ;
Dayan, Danit .
OBESITY SURGERY, 2022, 32 (05) :1617-1623
[2]   Molecular Mechanism ofHelicobacter pylori-Induced Gastric Cancer [J].
Alipour, Majid .
JOURNAL OF GASTROINTESTINAL CANCER, 2021, 52 (01) :23-30
[3]   Clinical value of a diagnostic score for colon cancer based on serum CEA, CA19-9, cytokeratin-1 and mucin-1 [J].
Attallah, A. M. ;
El-Far, M. ;
Ibrahim, A. R. ;
El-desouky, M. A. ;
Omran, M. M. ;
Elbendary, M. S. ;
Attallah, K. A. ;
Qura, E. R. ;
Abdallah, S. O. .
BRITISH JOURNAL OF BIOMEDICAL SCIENCE, 2018, 75 (03) :122-127
[4]   Correlation between expression of MMP-9 and MMP-3 in Helicobacter pylori infected patients with different gastroduodenal diseases [J].
Bagheri, Nader ;
Sadeghiani, Marzieh ;
Rahimian, Ghorbanali ;
Mahsa, Majid ;
Shafigh, Mohammedhadi ;
Rafieian-Kopaei, Mahmoud ;
Shirzad, Hedayatollah .
ARAB JOURNAL OF GASTROENTEROLOGY, 2018, 19 (04) :148-154
[5]   Mechanisms of the Epithelial-Mesenchymal Transition and Tumor Microenvironment in Helicobacter pylori-Induced Gastric Cancer [J].
Baj, Jacek ;
Korona-Glowniak, Izabela ;
Forma, Alicja ;
Maani, Amr ;
Sitarz, Elzbieta ;
Rahnama-Hezavah, Mansur ;
Radzikowska, Elzbieta ;
Portincasa, Piero .
CELLS, 2020, 9 (04)
[6]   Current cancer burden in China: epidemiology, etiology, and prevention [J].
Cao, Maomao ;
Li, He ;
Sun, Dianqin ;
He, Siyi ;
Yan, Xinxin ;
Yang, Fan ;
Zhang, Shaoli ;
Xia, Changfa ;
Lei, Lin ;
Peng, Ji ;
Chen, Wanqing .
CANCER BIOLOGY & MEDICINE, 2022, 19 (08) :1121-1138
[7]   A review of machine learning in obesity [J].
DeGregory, K. W. ;
Kuiper, P. ;
DeSilvio, T. ;
Pleuss, J. D. ;
Miller, R. ;
Roginski, J. W. ;
Fisher, C. B. ;
Harness, D. ;
Viswanath, S. ;
Heymsfield, S. B. ;
Dungan, I. ;
Thomas, D. M. .
OBESITY REVIEWS, 2018, 19 (05) :668-685
[8]   Effects of helicobacter pylori on tumor microenvironment and immunotherapy responses [J].
Deng, Ruiyi ;
Zheng, Huiling ;
Cai, Hongzhen ;
Li, Man ;
Shi, Yanyan ;
Ding, Shigang .
FRONTIERS IN IMMUNOLOGY, 2022, 13
[9]   Cytokines, cytokine gene polymorphisms and Helicobacter pylori infection: Friend or foe? [J].
Figueiredo, Camila A. ;
Marques, Cintia Rodrigues ;
Costa, Ryan Dos Santos ;
da Silva, Hugo Bernardino F. ;
Alcantara-Neves, Neuza M. .
WORLD JOURNAL OF GASTROENTEROLOGY, 2014, 20 (18) :5235-5243
[10]   Inflammatory Response After Laparoscopic Versus Open Resection of Colorectal Liver Metastases Data From the Oslo-CoMet Trial [J].
Fretland, Aasmund Avdem ;
Sokolov, Andrey ;
Postriganova, Nadya ;
Kazaryan, Airazat M. ;
Pischke, Soren E. ;
Nilsson, Per H. ;
Rognes, Ingrid Nygren ;
Bjornbeth, Bjorn Atle ;
Fagerland, Morten Wang ;
Mollnes, Tom Eirik ;
Edwin, Bjorn .
MEDICINE, 2015, 94 (42) :e1786