3D-Printed Electrochemical Sensors: A Comprehensive Review of Clinical Analysis Applications

被引:2
作者
Candido, Thais Cristina de Oliveira [1 ]
da Silva, Daniela Nunes [1 ]
Borges, Marcella Matos Cordeiro [1 ]
Barbosa, Thiago Gabry [1 ]
da Trindade, Scarlat Ohanna Davila [1 ]
Pereira, Arnaldo Cesar [1 ]
机构
[1] Univ Fed Sao Joao del Rei, Nat Sci Dept, 74 Praca Dom Helvecio, BR-36301160 Sao Joao Del Rei, MG, Brazil
来源
ANALYTICA | 2024年 / 5卷 / 04期
关键词
electrochemical sensor; 3D printing; fused deposition modeling; clinical analysis; POLYLACTIC ACID PLA; GRAPHENE ELECTRODES; BIODEGRADATION; METHIONINE; PLATFORM;
D O I
10.3390/analytica5040037
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Three-dimensional printing technology has emerged as a versatile and cost-effective alternative for the fabrication of electrochemical sensors. To enhance sensor sensitivity and biocompatibility, a diverse range of biocompatible and conductive materials can be employed in these devices. This allows these sensors to be modified to detect a wide range of analytes in various fields. 3D-printed electrochemical sensors have the potential to play a pivotal role in personalized medicine by enabling the real-time monitoring of metabolite and biomarker levels. These data can be used to personalize treatment strategies and optimize patient outcomes. The portability and low-cost nature of 3D-printed electrochemical sensors make them suitable for point-of-care (POC) diagnostics. These tests enable rapid and decentralized analyses, aiding in diagnosis and treatment decisions in resource-limited settings. Among the techniques widely reported in the literature for 3D printing, the fused deposition modeling (FDM) technique is the most commonly used for the development of electrochemical devices due to the easy accessibility of equipment and materials. Focusing on the FDM technique, this review explores the critical factors influencing the fabrication of electrochemical sensors and discusses potential applications in clinical analysis, while acknowledging the challenges that need to be overcome for its effective adoption.
引用
收藏
页码:552 / 575
页数:24
相关论文
共 133 条
[41]   The influence of printing parameters on multi-material two-photon polymerisation based micro additive manufacturing [J].
Hu, Qin ;
Rance, Graham A. ;
Trindade, Gustavo F. ;
Pervan, David ;
Jiang, Long ;
Foerster, Aleksandra ;
Turyanska, Lyudmila ;
Tuck, Christopher ;
Irvine, Derek J. ;
Hague, Richard ;
Wildman, Ricky D. .
ADDITIVE MANUFACTURING, 2022, 51
[42]   3D printed skyscraper electrochemical biosensor for the detection of tumour necrosis factor alpha (TNF α ) in faeces [J].
Hussain, Khalil K. ;
Hopkins, Ryan ;
Yeoman, Mark S. ;
Patel, Bhavik Anil .
SENSORS AND ACTUATORS B-CHEMICAL, 2024, 410
[43]   Fabrication and challenges of 3D printed sensors for biomedical applications-Comprehensive review [J].
Hussan, K. S. Jelva ;
Subramaniam, Mohana Priya ;
Kenz, K. . T. Mohammed ;
Sreeram, Pranav ;
Parvathi, Sree ;
Sari, P. S. ;
Pullanchiyodan, Abhilash ;
Mulhivill, Daniel M. ;
Raghavan, Prasanth .
RESULTS IN ENGINEERING, 2024, 21
[44]   Research progress on portable electrochemical sensors for detection of mycotoxins in food and environmental samples [J].
Jiang, Youwei ;
Sima, Yingyu ;
Liu, Lei ;
Zhou, Chuanqin ;
Shi, Shuting ;
Wan, Kun ;
Chen, Aiting ;
Tang, Nana ;
He, Quanguo ;
Liu, Jun .
CHEMICAL ENGINEERING JOURNAL, 2024, 485
[45]   3D-printing in forensic electrochemistry: Atropine determination in beverages using an additively manufactured graphene-polylactic acid electrode [J].
Joao, Afonso F. ;
Rocha, Raquel G. ;
Matias, Tiago A. ;
Richter, Eduardo M. ;
Petruci, Joao Flavio S. ;
Munoz, Rodrigo A. A. .
MICROCHEMICAL JOURNAL, 2021, 167
[46]   Recycled additive manufacturing feedstocks with carboxylated multi-walled carbon nanotubes toward the detection of yellow fever virus cDNA [J].
Kalinke, Cristiane ;
Crapnell, Robert D. ;
Sigley, Evelyn ;
Whittingham, Matthew J. ;
de Oliveira, Paulo R. ;
Brazaca, Lais C. ;
Janegitz, Bruno C. ;
Bonacin, Juliano A. ;
Banks, Craig E. .
CHEMICAL ENGINEERING JOURNAL, 2023, 467
[47]   3D-printed immunosensor for the diagnosis of Parkinson?s disease [J].
Kalinke, Cristiane ;
De Oliveira, Paulo Roberto ;
Banks, Craig E. ;
Janegitz, Bruno Campos ;
Bonacin, Juliano Alves .
SENSORS AND ACTUATORS B-CHEMICAL, 2023, 381
[48]   Influence of filament aging and conductive additive in 3D printed sensors [J].
Kalinke, Cristiane ;
de Oliveira, Paulo Roberto ;
Neumsteir, Naile Vacilotto ;
Henriques, Brunna Ferri ;
Aparecido, Gabriel de Oliveira ;
Loureiro, Hugo Campos ;
Janegitz, Bruno Campos ;
Bonacin, Juliano Alves .
ANALYTICA CHIMICA ACTA, 2022, 1191
[49]   Sensing of L-methionine in biological samples through fully 3D-printed electrodes [J].
Kalinke, Cristiane ;
Neumsteir, Naile Vacionotto ;
de Oliveira, Paulo Roberto ;
Janegitz, Bruno Campos ;
Bonacin, Juliano Alves .
ANALYTICA CHIMICA ACTA, 2021, 1142 :135-142
[50]   Comparison of activation processes for 3D printed PLA-graphene electrodes: electrochemical properties and application for sensing of dopamine [J].
Kalinke, Cristiane ;
Neumsteir, Naile Vacilotto ;
Aparecido, Gabriel de Oliveira ;
de Barros Ferraz, Thiago Vasconcelos ;
dos Santos, Pamyla Layene ;
Janegitz, Bruno Campos ;
Bonacin, Juliano Alves .
ANALYST, 2020, 145 (04) :1207-1218