A comprehensive review of using optical fibre interferometry for intrusion detection with artificial intelligence techniques

被引:1
|
作者
Mehta, Hitesh [1 ,2 ]
Ramrao, Nagaraj [1 ]
Sharan, Preeta [3 ]
机构
[1] Mohan Babu Univ, Dept Elect & Commun Engn, Tirupati, Andhra Pradesh, India
[2] Fibre Opt Sensing Solut Pvt Ltd, Mumbai, India
[3] Oxford Coll Engn, Bangalore, Karnataka, India
来源
JOURNAL OF OPTICS-INDIA | 2024年
关键词
Fibre Optic Sensor (FOS); Perimeter Intrusion Detection (PID); Machine learning; Deep learning; Artificial intelligence; Fibre Bragg grating; DETECTION SYSTEMS; DISCRIMINATION; CLASSIFICATION; PERFORMANCE; SENSORS;
D O I
10.1007/s12596-024-02404-w
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Security remains a critical concern in today's world, especially for protecting high-value assets and vital infrastructure such as refineries, petrochemical plants, government facilities, and military installations. Traditional security measures often fall short against increasingly sophisticated threats. To meet these challenges, perimeter intrusion detection systems (PIDS) have become indispensable. Optical fiber interferometry (OFI), an advanced sensing technology, provides key advantages for PIDS, including high sensitivity, real time monitoring, immunity to electromagnetic interference, and long-range coverage. This research explores the integration of OFI with machine learning and deep learning techniques, enhancing intrusion detection and classification capabilities. Machine learning allows systems to process vast amounts of sensor data, recognize patterns, and accurately classify threats in real time. Deep learning further optimizes this by simulating neural networks to understand complex data relationships, reduce false alarms, and improve adaptive learning. The fusion of these technologies marks a significant leap forward in security, enabling intelligent, responsive, and highly accurate intrusion detection solutions.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Artificial intelligence in chorioretinal pathology through fundoscopy: a comprehensive review
    Driban, Matthew
    Yan, Audrey
    Selvam, Amrish
    Ong, Joshua
    Vupparaboina, Kiran Kumar
    Chhablani, Jay
    INTERNATIONAL JOURNAL OF RETINA AND VITREOUS, 2024, 10 (01)
  • [32] A Comprehensive Review of Artificial Intelligence Techniques in Financial Market
    Berradi, Zahra
    Lazaar, Mohamed
    Mahboub, Oussama
    Omara, Hicham
    2020 6TH IEEE CONGRESS ON INFORMATION SCIENCE AND TECHNOLOGY (IEEE CIST'20), 2020, : 367 - 371
  • [33] Artificial Intelligence and Radiomics in Cholangiocarcinoma: A Comprehensive Review
    Zerunian, Marta
    Polidori, Tiziano
    Palmeri, Federica
    Nardacci, Stefano
    Del Gaudio, Antonella
    Masci, Benedetta
    Tremamunno, Giuseppe
    Polici, Michela
    De Santis, Domenico
    Pucciarelli, Francesco
    Laghi, Andrea
    Caruso, Damiano
    DIAGNOSTICS, 2025, 15 (02)
  • [34] The Potential of Artificial Intelligence in Prosthodontics: A Comprehensive Review
    Aljulayfi, Ibrahim Saleh
    Almatrafi, Ali Hamoud
    Althubaitiy, Ramzi O.
    Alnafisah, Fahad
    Alshehri, Khalid
    Alzahrani, Bandar
    Gufran, Khalid
    MEDICAL SCIENCE MONITOR, 2024, 30
  • [35] Advancing UAV security with artificial intelligence: A comprehensive survey of techniques and future directions
    Tlili, Fadhila
    Ayed, Samiha
    Fourati, Lamia Chaari
    INTERNET OF THINGS, 2024, 27
  • [36] Application of Artificial Intelligence techniques for the detection of Alzheimer's disease using structural MRI images
    Zhao, Xinxing
    Ang, Candice Ke En
    Acharya, U. Rajendra
    Cheong, Kang Hao
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (02) : 456 - 473
  • [37] Stock Market Prediction Techniques Using Artificial Intelligence: A Systematic Review
    Chaudhari, Chandravesh
    Purswani, Geetanjali
    THIRD CONGRESS ON INTELLIGENT SYSTEMS, CIS 2022, VOL 1, 2023, 608 : 219 - 233
  • [38] Artificial intelligence in fracture detection on radiographs: a literature review
    Lo Mastro, Antonio
    Grassi, Enrico
    Berritto, Daniela
    Russo, Anna
    Reginelli, Alfonso
    Guerra, Egidio
    Grassi, Francesca
    Boccia, Francesco
    JAPANESE JOURNAL OF RADIOLOGY, 2024, : 551 - 585
  • [39] A systematic review on artificial intelligence techniques for detecting thyroid diseases
    Aversano, Lerina
    Bernardi, Mario Luca
    Cimitile, Marta
    Maiellaro, Andrea
    Pecori, Riccardo
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [40] Detection of Mycotoxin Contamination in Foods Using Artificial Intelligence: A Review
    Aggarwal, Ashish
    Mishra, Akanksha
    Tabassum, Nazia
    Kim, Young-Mog
    Khan, Fazlurrahman
    FOODS, 2024, 13 (20)