STRONGLY EXTENDING MODULAR LATTICES

被引:0
|
作者
Atani, Shahabaddin ebrahimi [1 ]
Khoramdel, Mehdi [1 ]
Hesari, Saboura dolati pish [1 ]
Alipour, Mahsa nikmard rostam [1 ]
机构
[1] Univ Guilan, Dept Math, POB 1914, Rasht, Iran
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2025年 / 49卷 / 04期
关键词
Modular lattice; upper continuous lattice; linear lattice morphism; fully invariant element; strongly extending lattice; OSOFSKY-SMITH THEOREM;
D O I
10.46793/KgJMat2504.541A
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, our purpose is to initiate the study of the concept of strongly extending modular lattices based on the similar notion of strongly extending modules. We will prove some basic properties of strongly extending modular lattices and employ this results to give applications to the category of modules with a fixed hereditary torsion class and Grothendieck categories.
引用
收藏
页码:541 / 553
页数:13
相关论文
共 50 条
  • [41] Modular C11 lattices and lattice preradicals
    Albu, Toma
    Iosif, Mihai
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (06)
  • [42] Galois theory for a certain class of complete modular lattices
    Panin A.A.
    Journal of Mathematical Sciences, 1999, 95 (2) : 2123 - 2125
  • [43] On the number of join irreducibles and acyclicity in finite modular lattices
    Christian Herrmann
    Algebra universalis, 2010, 64 : 433 - 444
  • [44] On the number of join irreducibles and acyclicity in finite modular lattices
    Herrmann, Christian
    ALGEBRA UNIVERSALIS, 2010, 64 (3-4) : 433 - 444
  • [45] Two Notes on the Variety Generated by Planar Modular Lattices
    Gábor Czédli
    Miklós Maróti
    Order, 2009, 26 : 109 - 117
  • [46] Commutative unary algebras with modular and distributive topology lattices
    Kartashova, Anna
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (03) : 1041 - 1051
  • [47] MODULAR QFD LATTICES WITH APPLICATIONS TO GROTHENDIECK CATEGORIES AND TORSION THEORIES
    Albu, Toma
    Iosif, Mihai
    Teply, Mark L.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2004, 3 (04) : 391 - 410
  • [48] On quasi-identities of finite modular lattices. II
    Basheyeva, A. O.
    Lutsak, S. M.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2023, 110 (02): : 45 - 52
  • [49] Dual digraphs of finite meet-distributive and modular lattices
    Craig, Andrew
    Haviar, Miroslav
    Marais, Klarise
    CUBO-A MATHEMATICAL JOURNAL, 2024, 26 (02): : 279 - 302
  • [50] MODULAR LATTICES FROM A VARIATION OF CONSTRUCTION A OVER NUMBER FIELDS
    Hou, Xiaolu
    Oggier, Frederique
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2017, 11 (04) : 719 - 745