Two-head classifier guided domain adversarial learning for universal domain adaptation in intelligent fault diagnosis

被引:1
|
作者
Zhang, Jiyang [1 ]
Wang, Xiangxiang [1 ]
Su, Zhiheng [1 ]
Lian, Penglong [1 ]
Xu, Hongbing [1 ]
Zou, Jianxiao [1 ,2 ]
Fan, Shicai [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Shenzhen 518110, Guangdong, Peoples R China
关键词
Intelligent fault diagnosis; Cross-domain fault diagnosis; Transfer learning; Universal domain adaptation; Two-head classifier; Domain adversarial learning; NETWORK;
D O I
10.1016/j.ress.2024.110708
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Domain adaptation (DA) methods have been widely used in cross-domain fault diagnosis to mitigate the distribution discrepancy between data from different working conditions. However, traditional DA methods are designed for specific one known category shift between domains. When prior knowledge about relationships between source and target label sets is unknown, the applicability of these methods is limited. To address this issue, a universal domain adaptation method named two-head classifier guided domain adversarial learning (THC-DAN) is proposed, which can handle all category shift scenarios in DA, including closed-set, partial-set, open-set, and open-partial-set. Specifically, we develop a domain adversarial network with an elegantly designed two-head classifier and adapt it to target domain. During adaptation, we first introduce an informative consistency score based on the two-head classifier to distinguish target private samples. Then, the consistency separation loss is proposed to push these samples away from classification boundaries. Finally, to realize the safe alignment on common classes between domains, the weighted adversarial learning based on the two-head classifier's prediction probability is presented to weaken effects of source private samples. Experiments under all DA scenarios on datasets from Case Western Reserve University, Paderborn University, and our own Drivetrain Prognostics Simulator demonstrate the effectiveness of THC-DAN.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Deep Adversarial Domain Adaptation Model for Bearing Fault Diagnosis
    Liu, Zhao-Hua
    Lu, Bi-Liang
    Wei, Hua-Liang
    Chen, Lei
    Li, Xiao-Hua
    Raetsch, Matthias
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (07): : 4217 - 4226
  • [22] Digital twin aided adversarial transfer learning method for domain adaptation fault diagnosis
    Wang, Jinrui
    Zhang, Zongzhen
    Liu, Zhiliang
    Han, Baokun
    Bao, Huaiqian
    Ji, Shanshan
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 234
  • [23] Pseudo-label guided dual classifier domain adversarial network for unsupervised cross-domain fault diagnosis with small samples
    Sun, Yawei
    Tao, Hongfeng
    Stojanovic, Vladimir
    ADVANCED ENGINEERING INFORMATICS, 2025, 64
  • [24] A New Universal Cross-Domain Bearing Fault Diagnosis Framework With Dynamic Distribution Adaptation Guided by Metric Learning
    Cao, Ximing
    Yang, Ruifeng
    Guo, Chenxia
    Wang, Shichao
    IEEE SENSORS JOURNAL, 2024, 24 (23) : 40038 - 40048
  • [25] A transfer learning method: Universal domain adaptation with noisy samples for bearing fault diagnosis
    Sun, Yi
    Song, Hongliang
    Guo, Liang
    Gao, Hongli
    Cao, Ao
    ADVANCED ENGINEERING INFORMATICS, 2025, 65
  • [26] An Unsupervised Domain Adaptation Method for Intelligent Bearing Fault Diagnosis Based on Signal Reconstruction by Cycle-Consistent Adversarial Learning
    Zhu, Wenying
    Shi, Boqiang
    Feng, Zhipeng
    Tang, Jiachen
    IEEE SENSORS JOURNAL, 2023, 23 (16) : 18477 - 18485
  • [27] DFSA-DAN: dynamic fusion of statistical metric and adversarial learning for domain adaptation network based intelligent fault diagnosis
    Shao, Yining
    Zheng, Xiaorong
    He, Zhiwei
    Gao, Mingyu
    Nie, Jiahao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (08)
  • [28] Multi-source Domain Adaptation Intelligent Fault Diagnosis Method Based on Asymmetric Adversarial Training
    Li, Zhipeng
    Ma, Tianyu
    Liu, Jinping
    Xiang, Qingsong
    Tang, Junjie
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2024, 60 (18): : 76 - 88
  • [29] Domain Adaptation With Self-Supervised Learning and Feature Clustering for Intelligent Fault Diagnosis
    Lu, Nannan
    Xiao, Hanhan
    Ma, Zhanguo
    Yan, Tong
    Han, Min
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (06) : 7657 - 7670
  • [30] Domain Adaptation for Intelligent Fault Diagnosis from Relation Perspective
    Tang, Lv
    Zhang, Qing
    Xuan, Jianping
    Journal of Physics: Conference Series, 2022, 2184 (01)