Long-term mechanical properties of hybrid fiber-reinforced engineered cementitious composite

被引:0
|
作者
Zhu, Shiyao [1 ,2 ]
Zhang, Y. X. [2 ]
Lee, C. K. [1 ]
机构
[1] Univ New South Wales, Sch Engn & Technol, Canberra, ACT 2600, Australia
[2] Western Sydney Univ, Sch Engn Design & Built Environm, Kingswood, NSW, Australia
关键词
ductility; engineered cementitious composite (ECC); hybrid fibers; long-term behavior; mechanical properties; HYDRATION; BEHAVIOR; RATIO;
D O I
10.1002/suco.202400902
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Hybrid fiber-reinforced engineered cementitious composites (hybrid ECC) employing short straight polyethylene (PE) and steel fibers have attracted growing interest in engineering applications due to their superior strength and ductility. In most studies, the mechanical properties of hybrid ECC were determined based on samples cured for 28 days, while their long-term mechanical properties are seldom studied. Since hybrid ECCs often incorporate supplementary cementitious materials that alter the hydration process over time, relying solely on the 28-day strength of samples may lead to inaccurate structural designs. To better understand the long-term mechanical properties of hybrid ECC, this work presents an experimental investigation of hybrid PE-steel fiber-reinforced ECC samples cured under standard conditions for up to 3 years. Uniaxial compressive tests, direct tensile tests, and four-point bending tests were conducted with samples cured at standard conditions for 28 days, 1 year, and 3 years. It was found that the compressive and tensile strengths of hybrid ECC increased with age. However, as the age increased to 3 years, the ultimate tensile strain and flexural ductility decreased significantly by 54% and 35%, respectively, compared to their 28-day values. Furthermore, most changes occurred within 1 year. It was also found that the main damage pattern of the PE fibers was transformed from pull-out to rupture failure as the curing age increased. Thermal-gravity analysis revealed that the hydration process of hybrid ECC may last for up to 3 years, which explains their changes in mechanical properties and PE fiber failure mode.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A multiscale thermo-mechanical coupling model for Fiber-Reinforced Cementitious Composite (FRCC)
    Wang, Hongwei
    Li, Liang
    Du, Xiuli
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 425
  • [32] Mechanical Properties of a Green Hybrid Fibre-Reinforced Cementitious Composite
    Tian, He
    Zhang, Y. X.
    CIVIL ENGINEERING, ARCHITECTURE AND SUSTAINABLE INFRASTRUCTURE II, PTS 1 AND 2, 2013, 438-439 : 275 - 279
  • [33] Fiber-reinforced cementitious composites incorporating glass cenospheres - Mechanical properties and microstructure
    Hanif, Asad
    Parthasarathy, Pavithra
    Lu, Zeyu
    Sun, Ming
    Li, Zongjin
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 154 : 529 - 538
  • [34] Application of Graphene in Fiber-Reinforced Cementitious Composites: A Review
    Wu, Songmei
    Qureshi, Tanvir
    Wang, Guorui
    ENERGIES, 2021, 14 (15)
  • [35] Analysis of Mechanical and Wettability Properties of Natural Fiber-Reinforced Epoxy Hybrid Composites
    Atmakuri, Ayyappa
    Palevicius, Arvydas
    Siddabathula, Madhusudan
    Vilkauskas, Andrius
    Janusas, Giedrius
    POLYMERS, 2020, 12 (12) : 1 - 15
  • [36] Experimental Study on Mechanical Properties of Hybrid Fiber-Reinforced Concrete
    Kinjawadekar, Trupti Amit
    Patil, Shantharam
    Nayak, Gopinatha
    Kinjawadekar, Amit
    Kulal, Shreyas A.
    JOURNAL OF ARCHITECTURAL ENGINEERING, 2024, 30 (04)
  • [37] Mechanical Properties of Aramid/Carbon Hybrid Fiber-Reinforced Concrete
    Li, Yeou-Fong
    Wang, Hsin-Fu
    Syu, Jin-Yuan
    Ramanathan, Gobinathan Kadagathur
    Tsai, Ying-Kuan
    Lok, Man Hoi
    MATERIALS, 2021, 14 (19)
  • [38] Development of Multiscale Fiber-Reinforced Engineered Cementitious Composites with PVA Fiber and CaCO3 Whisker
    Pan, Jinlong
    Cai, Jingming
    Ma, Hui
    Leung, Christopher K. Y.
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2018, 30 (06)
  • [39] Effect of fiber and resin types on mechanical properties of fiber-reinforced composite pipe
    Gokce, Neslihan
    Yilmazer, Ulku
    Subasi, Serkan
    EMERGING MATERIALS RESEARCH, 2019, 8 (03) : 452 - 458
  • [40] Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction
    Yao, W
    Li, J
    Wu, K
    CEMENT AND CONCRETE RESEARCH, 2003, 33 (01) : 27 - 30