Multi-condition hawser tension prediction of offshore offloading system based on long and short-term memory network and transfer learning

被引:0
|
作者
Zhang, Xu [1 ,2 ,3 ]
Luo, Hao [1 ]
Hao, Hongbin [4 ,5 ]
Ma, Yong [1 ,2 ,3 ]
机构
[1] Sun Yat sen Univ, Sch Ocean Engn & Technol, Dept Pathol, Zhuhai, Peoples R China
[2] Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai, Peoples R China
[3] Sun Yat sen Univ, Key Lab Comprehens Observat Polar Environm, Minist Educ, Zhuhai, Peoples R China
[4] Hong Kong Ploytechn Univ, Dept Civil & Environm Engn, Kowloon, Hong Kong, Peoples R China
[5] Hong Kong Polytech Univ, Res Inst Sustainable Urban Dev, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Hawser tension; LSTM; transfer learning; FPSO; real-time condition monitoring; short-term prediction;
D O I
10.1080/19942060.2024.2425180
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Real-time prediction of hawser tension of the side-by-side oil offloading system of Floating Production Storage and Offloading (FPSO) can provide early warnings for hawser breakages and ship collision risk, thus improving structural, property, and environmental security. Although offline numerical models and Long Short-Term Memory (LSTM) could offer substantial precision, they confront intensive time costs in recalibrating or retraining models. This paper proposes an integration method of LSTM networks and transfer learning for real-time tension prediction considering inputs of actual remote wave elevations. We use short-term environmental data and numerical simulation data of correlated hawser tensions during offloading operations to train a pre-trained benchmark model for transfer learning. Then, a highly generalized and efficient transferred model is constructed by using a small sample to realize short-term tension predictions in time-varying environments. The results show the occurrence time and value of extreme tensions predicted by transfer learning nearly match the reference data, and their maximum errors are 3 s and 0.11, respectively, superior to LSTM direct training. Therefore, it provides sufficient demand for real-time prediction and early collision risk prevention in dynamically changing ocean environment. The research results could provide an alternative framework for intelligent monitoring of large-scale marine structures.
引用
收藏
页数:29
相关论文
共 50 条
  • [11] Combined Long Short-Term Memory Network-Based Short-Term Prediction of Solar Irradiance
    Madhiarasan, Manoharan
    Louzazni, Mohamed
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2022, 2022
  • [12] Multi-scale network traffic prediction based on attention mechanism and long short-term memory network
    Qian, Tang
    Liu, Yang
    Chao, Ma
    Yifei, Wei
    Journal of China Universities of Posts and Telecommunications, 2024, 31 (06): : 26 - 34
  • [13] Multi-scale network traffic prediction based on attention mechanism and long short-term memory network
    Tang Qian
    Yang Liu
    Ma Chao
    Wei Yifei
    The Journal of China Universities of Posts and Telecommunications, 2024, 31 (06) : 26 - 34+56
  • [14] A transfer learning-based long short-term memory model for the prediction of river water temperature
    Chen, Jinzhou
    Xue, Xinhua
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [15] Multi-Aircraft Trajectory Collaborative Prediction Based on Social Long Short-Term Memory Network
    Xu, Zhengfeng
    Zeng, Weili
    Chu, Xiao
    Cao, Puwen
    AEROSPACE, 2021, 8 (04)
  • [16] Reactive Load Prediction Based on a Long Short-Term Memory Neural Network
    Zhang, Xu
    Wang, Yixian
    Zheng, Yuchuan
    Ding, Ruiting
    Chen, Yunlong
    Wang, Yi
    Cheng, Xueting
    Yue, Shuai
    IEEE ACCESS, 2020, 8 : 90969 - 90977
  • [17] Short-term wind speed prediction model based on long short-term memory network with feature extraction
    Zhongda Tian
    Xiyan Yu
    Guokui Feng
    Earth Science Informatics, 2025, 18 (4)
  • [18] Long Short-term Memory Neural Network for Network Traffic Prediction
    Zhuo, Qinzheng
    Li, Qianmu
    Yan, Han
    Qi, Yong
    2017 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (IEEE ISKE), 2017,
  • [19] A Convolutional Long Short-Term Memory Neural Network Based Prediction Model
    Tian, Y. H.
    Wu, Q.
    Zhang, Y.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2020, 15 (05) : 1 - 12
  • [20] Ionospheric TEC prediction using Long Short-Term Memory deep learning network
    Zhichao Wen
    Shuhui Li
    Lihua Li
    Bowen Wu
    Jianqiang Fu
    Astrophysics and Space Science, 2021, 366