Identification of Unstable Linear Systems using Data-driven Koopman Analysis

被引:0
|
作者
Ketthong, Patinya [1 ,2 ]
Samkunta, Jirayu [1 ]
Nghia Thi Mai [3 ]
Hashikura, Kotaro [4 ]
Kamal, Md Abdus Samad [4 ]
Murakami, Iwanori [4 ]
Yamada, Kou [4 ]
机构
[1] Gunma Univ, Grad Sch Sci & Technol, 1-5-1 Tenjincho, Kiryu, Gumma 3768515, Japan
[2] Thai Nichi Inst Technol, Fac Engn, Bangkok, Thailand
[3] Posts & Telecommun Inst Technol, Dept Elect & Elect, Km10, Hanoi, Vietnam
[4] Gunma Univ, Div Mech Sci & Technol, 1-5-1 Tenjincho, Kiryu, Gumma 3768515, Japan
来源
2024 21ST INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY, ECTI-CON 2024 | 2024年
关键词
Sparse modeling; HAVOK algorithm; System identification; SUBSPACE IDENTIFICATION; GLOBAL IDENTIFIABILITY; MODEL IDENTIFICATION; TIME; STATE;
D O I
10.1109/ECTI-CON60892.2024.10594915
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
System identification plays a crucial role in modern control techniques, enabling the data-driven learning of input-output maps or mathematical models. However, practical applications face challenges as the actual number of states is often unknown, and observed variables may be limited. Additionally, unstable systems present further difficulties, as their outputs rapidly diverge or saturate, hindering long-term measurement. This paper addresses these challenges by proposing a novel input-aware modeling method for unstable linear systems using data-driven Koopman analysis. Unlike traditional Koopman analysis which focuses solely on state dynamics, our method explicitly incorporates the influence of the input function u(t). This enables us to accurately capture the complete behavior of the system, even under the influence of external control signals. By leveraging Koopman operator theory on augmented state-input data, we capture both the intrinsic dynamics and the sensitivity to external control, crucial for accurate prediction and control of unstable systems. This input-aware approach extends the capabilities of data-driven Koopman analysis to improve modeling and control of complex unstable systems in various applications.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Extending Data-Driven Koopman Analysis to Actuated Systems
    Williams, Matthew O.
    Hemati, Maziar S.
    Dawson, Scott T. M.
    Kevrekidis, Ioannis G.
    Rowley, Clarence W.
    IFAC PAPERSONLINE, 2016, 49 (18): : 704 - 709
  • [2] Data-Driven Identification of Dissipative Linear Models for Nonlinear Systems
    Sivaranjani, S.
    Agarwal, Etika
    Gupta, Vijay
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (09) : 4978 - 4985
  • [3] Data-driven discovery of Koopman eigenfunctions for control
    Kaiser, Eurika
    Kutz, J. Nathan
    Brunton, Steven L.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (03):
  • [4] Data-driven approximation of the Koopman generator: Model reduction, system identification, and control
    Klus, Stefan
    Nuske, Feliks
    Peitz, Sebastian
    Niemann, Jan-Hendrik
    Clementi, Cecilia
    Schuette, Christof
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 406
  • [5] Integrating autoencoder with Koopman operator to design a linear data-driven model predictive controller
    Wang, Xiaonian
    Ayachi, Sheel
    Corbett, Brandon
    Mhaskar, Prashant
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2025, 103 (03) : 1099 - 1111
  • [6] Data-driven Koopman operator approach for computational neuroscience
    Marrouch, Natasza
    Slawinska, Joanna
    Giannakis, Dimitrios
    Read, Heather L.
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2020, 88 (11-12) : 1155 - 1173
  • [7] Data-driven reduced order modeling for mechanical oscillators using Koopman approaches
    Geier, Charlotte
    Stender, Merten
    Hoffmann, Norbert
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 9
  • [8] Data-driven identification and fast model predictive control of the ORC waste heat recovery system by using Koopman operator
    Shi, Yao
    Hu, Xiaorong
    Zhang, Zhiming
    Chen, Qiming
    Xie, Lei
    Su, Hongye
    CONTROL ENGINEERING PRACTICE, 2023, 141
  • [9] Data-driven discovery of linear dynamical systems from noisy data
    YaSen Wang
    Ye Yuan
    HuaZhen Fang
    Han Ding
    Science China Technological Sciences, 2024, 67 : 121 - 129
  • [10] Data-driven discovery of linear dynamical systems from noisy data
    Wang, Yasen
    Yuan, Ye
    Fang, Huazhen
    Ding, Han
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (01) : 121 - 129