Identification of Unstable Linear Systems using Data-driven Koopman Analysis

被引:0
|
作者
Ketthong, Patinya [1 ,2 ]
Samkunta, Jirayu [1 ]
Nghia Thi Mai [3 ]
Hashikura, Kotaro [4 ]
Kamal, Md Abdus Samad [4 ]
Murakami, Iwanori [4 ]
Yamada, Kou [4 ]
机构
[1] Gunma Univ, Grad Sch Sci & Technol, 1-5-1 Tenjincho, Kiryu, Gumma 3768515, Japan
[2] Thai Nichi Inst Technol, Fac Engn, Bangkok, Thailand
[3] Posts & Telecommun Inst Technol, Dept Elect & Elect, Km10, Hanoi, Vietnam
[4] Gunma Univ, Div Mech Sci & Technol, 1-5-1 Tenjincho, Kiryu, Gumma 3768515, Japan
关键词
Sparse modeling; HAVOK algorithm; System identification; SUBSPACE IDENTIFICATION; GLOBAL IDENTIFIABILITY; MODEL IDENTIFICATION; TIME; STATE;
D O I
10.1109/ECTI-CON60892.2024.10594915
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
System identification plays a crucial role in modern control techniques, enabling the data-driven learning of input-output maps or mathematical models. However, practical applications face challenges as the actual number of states is often unknown, and observed variables may be limited. Additionally, unstable systems present further difficulties, as their outputs rapidly diverge or saturate, hindering long-term measurement. This paper addresses these challenges by proposing a novel input-aware modeling method for unstable linear systems using data-driven Koopman analysis. Unlike traditional Koopman analysis which focuses solely on state dynamics, our method explicitly incorporates the influence of the input function u(t). This enables us to accurately capture the complete behavior of the system, even under the influence of external control signals. By leveraging Koopman operator theory on augmented state-input data, we capture both the intrinsic dynamics and the sensitivity to external control, crucial for accurate prediction and control of unstable systems. This input-aware approach extends the capabilities of data-driven Koopman analysis to improve modeling and control of complex unstable systems in various applications.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Data-Driven Control of Linear Parabolic Systems Using Koopman Eigenstructure Assignment
    Deutscher, Joachim
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2025, 70 (01) : 665 - 672
  • [2] Extending Data-Driven Koopman Analysis to Actuated Systems
    Williams, Matthew O.
    Hemati, Maziar S.
    Dawson, Scott T. M.
    Kevrekidis, Ioannis G.
    Rowley, Clarence W.
    IFAC PAPERSONLINE, 2016, 49 (18): : 704 - 709
  • [3] Data-driven identification of vehicle dynamics using Koopman operator
    Cibulka, Vit
    Hanis, Tomas
    Hromcik, Martin
    PROCEEDINGS OF THE 2019 22ND INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC19), 2019, : 167 - 172
  • [4] Data-driven transient stability analysis using the Koopman operator
    Matavalam, Amar Ramapuram
    Hou, Boya
    Choi, Hyungjin
    Bose, Subhonmesh
    Vaidya, Umesh
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 162
  • [5] Data-Driven Predictive Control of Interconnected Systems Using the Koopman Operator
    Tellez-Castro, Duvan
    Garcia-Tenorio, Camilo
    Mojica-Nava, Eduardo
    Sofrony, Jorge
    Vande Wouwer, Alain
    ACTUATORS, 2022, 11 (06)
  • [6] Data-driven spectral analysis of the Koopman operator
    Korda, Milan
    Putinar, Mihai
    Mezic, Igor
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (02) : 599 - 629
  • [7] Robust data-driven control for nonlinear systems using the Koopman operator
    Straesser, Robin
    Berberich, Julian
    Allgower, Frank
    IFAC PAPERSONLINE, 2023, 56 (02): : 2257 - 2262
  • [8] Analysis of a Class of Hyperbolic Systems via Data-Driven Koopman Operator
    Garcia-Tenorio, C.
    Tellez-Castro, D.
    Mojica-Nava, E.
    Vande Wouwer, A.
    2019 23RD INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2019, : 566 - 571
  • [9] Identification of the Madden-Julian Oscillation With Data-Driven Koopman Spectral Analysis
    Lintner, Benjamin R. R.
    Giannakis, Dimitrios
    Pike, Max
    Slawinska, Joanna
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (10)
  • [10] A Survey on the Methods and Results of Data-Driven Koopman Analysis in the Visualization of Dynamical Systems
    Parmar, Nishaal
    Refai, Hazem H.
    Runolfsson, Thordur
    IEEE TRANSACTIONS ON BIG DATA, 2022, 8 (03) : 723 - 738