Rational design of ZnO/SrTiO3 S-scheme heterojunction for photo-enhanced piezocatalytic hydrogen production

被引:1
|
作者
Kuru, Talha [1 ,2 ]
Sarilmaz, Adem [3 ]
Aslan, Emre [4 ]
Ozel, Faruk [1 ,3 ,5 ]
Patir, Imren Hatay [1 ,3 ]
机构
[1] Selcuk Univ, Dept Biotechnol, TR-42030 Konya, Turkiye
[2] YEO Technol R&D Ctr, TR-34870 Istanbul, Turkiye
[3] Karamanoglu Mehmetbey Univ, Dept Met & Mat Engn, TR-70200 Karaman, Turkiye
[4] Selcuk Univ, Dept Biochem, Konya 42030, Turkiye
[5] Recep Tayyip Erdogan Univ, Dept Mech Engn, TR-53100 Rize, Turkiye
关键词
Hydrogen evolution; Piezocatalysis; Photocatalysis; Water splitting; ZnO; H2; EVOLUTION; BAND-GAP; WATER; CRYSTAL; NANOSTRUCTURES; PHOTOCATALYST; TEMPERATURE; PERFORMANCE; NANOSHEETS; ENERGY;
D O I
10.1016/j.apsusc.2024.161704
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photopiezocatalysis have been frequently investigated for hydrogen evolution reactions in recent years. Herein, ZnO, SrTiO3 and ZnO/SrTiO3 S-scheme heterojunction were investigated for photo/piezocatalytic hydrogen production. Piezocatalytic hydrogen production under ultrasonic vibration by using ZnO, SrTiO3 and ZnO/SrTiO3 was obtained as 270 mu mol g(-1)h(-1), 200 mu mol g(-1)h(-1) and 1265 mu mol g(-1)h(-1), respectively. In addition, ZnO/SrTiO3 S-scheme heterojunction showed 2200 mu mol g(-1)h(-1) photopiezocatalytic hydrogen production under simultaneous exposure to white LED light and ultrasonic sound. ZnO/SrTiO3 heterojunction displayed significantly higher hydrogen production rate due to the decreased charge recombination, increased charge transfer with strong piezoelectric polarization and internal electrical field. The piezoelectric effect of ZnO/SrTiO3 heterojunction is also confirmed by piezoresponse force microscope technique with butterfly and phase hysteresis loops. Also, piezoelectric coefficient of ZnO/SrTiO3 found about 2-folds higher than those of their pristine forms. Electron transfer and reaction mechanism of ZnO/SrTiO3 and activity differences are confirmed by advanced optical and electrochemical techniques such as diffuse reflectance spectroscopy, electronic impedance spectroscopy, Mott-Schottky calculation and chronoamperometry. The whole electrochemical measurements have been performed with or without mechanical stress and light irradiation, which signify their band bending properties, electron transfer mechanism and catalytic activities.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Efficient hydrogen evolution with ZnO/SrTiO3 S-scheme heterojunction photocatalyst sensitized by Eosin Y
    Zhao, Yi
    Guo, Yarui
    Li, Jibiao
    Li, Ping
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (36) : 18922 - 18935
  • [2] S-scheme heterojunction in photocatalytic hydrogen production
    Li, Teng
    Tsubaki, Noritatsu
    Jin, Zhiliang
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 169 : 82 - 104
  • [3] Construction of SrTiO3/CaIn2S4 S-scheme heterojunction for enhanced photocatalytic degradation of organic pollutants
    Chen, Sunyao
    Chen, Changchun
    Cheng, Cheng
    Shu, Lingxiu
    Tang, Zhonghai
    Wang, Yifeng
    Pan, Lin
    Guan, Zisheng
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2023, 164
  • [4] Rational design of ZnO-CuO-Au S-scheme heterojunctions for photocatalytic hydrogen production under visible light
    Ahmad, Irshad
    Shukrullah, Shazia
    Naz, Muhammad Yasin
    Bhatti, Haq Nawaz
    Khalid, N. R.
    Ullah, Sami
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (34) : 12683 - 12698
  • [5] S-scheme ZnO/WO 3 heterojunction photocatalyst for efficient H 2 O 2 production
    Jiang, Zicong
    Cheng, Bei
    Zhang, Yong
    Wageh, S.
    Al-Ghamdi, Ahmed A.
    Yu, Jiaguo
    Wang, Linxi
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 124 : 193 - 201
  • [6] Clustered tubular S-scheme ZnO/CdS heterojunctions for enhanced photocatalytic hydrogen production
    Lu, Hongyu
    Liu, Yanjun
    Zhang, Shizheng
    Wan, Jie
    Wang, Xiaoli
    Deng, Lin
    Kan, Jianfei
    Wu, Gongde
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2023, 289
  • [7] Phosphorus modified Ni-MOF-74/BiVO4 S-scheme heterojunction for enhanced photocatalytic hydrogen evolution
    Li, Hongying
    Gong, Haiming
    Jin, Zhiliang
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2022, 307
  • [8] Nano-flower S-scheme heterojunction NiAl-LDH/MoS2 for enhancing photocatalytic hydrogen production
    Liu, Xinyu
    Xu, Jing
    Ma, Lijun
    Liu, Ye
    Hu, Linying
    NEW JOURNAL OF CHEMISTRY, 2021, 46 (01) : 228 - 238
  • [9] Synthesis of CdSe/SrTiO3 nanocomposites with enhanced photocatalytic hydrogen production activity
    Han, Jishu
    Dai, Fangxu
    Liu, Ying
    Zhao, Ruiyang
    Wang, Lei
    Feng, Shouhua
    APPLIED SURFACE SCIENCE, 2019, 467 : 1033 - 1039
  • [10] Amorphous CoSx Growth on CaTiO3 Nanocubes Formed S-Scheme Heterojunction for Photocatalytic Hydrogen Production
    Ma, Xiaohua
    Liu, Yanan
    Wang, Yuanpeng
    Jin, Zhiliang
    ENERGY & FUELS, 2021, 35 (07) : 6231 - 6239