Convergence of the derivative martingale for the branching random walk in time-inhomogeneous random environment

被引:0
作者
Hong, Wenming [1 ,2 ]
Liang, Shengli [3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[3] Southern Univ Sci & Technol, Shenzhen Int Ctr Math, Shenzhen 518055, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Branching random walk; random environment; derivative martingale; quenched harmonic function; random walk conditioned to stay non-negative; Tanaka's decomposition; LIMIT-THEOREM; FIXED-POINTS; SUFFICIENT CONDITION; EQUATION; CRITICALITY;
D O I
10.1017/apr.2024.55
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a branching random walk on the real line with a random environment in time(BRWRE). A necessary and sufficient condition for the non-triviality of the limit of thederivative martingale is formulated. To this end, we investigate the random walk in atime-inhomogeneous random environment (RWRE), which is related to the BRWRE bythe many-to-one formula. The key step is to figure out Tanaka's decomposition for theRWRE conditioned to stay non-negative (or above a line), which is interesting in itself.
引用
收藏
页码:642 / 676
页数:35
相关论文
共 33 条
[1]   Criticality for branching processes in random environment [J].
Afanasyev, VI ;
Geiger, J ;
Kersting, G ;
Vatutin, VA .
ANNALS OF PROBABILITY, 2005, 33 (02) :645-673
[2]   THE SENETA-HEYDE SCALING FOR THE BRANCHING RANDOM WALK [J].
Aidekon, Elie ;
Shi, Zhan .
ANNALS OF PROBABILITY, 2014, 42 (03) :959-993
[3]   CONVERGENCE IN LAW OF THE MINIMUM OF A BRANCHING RANDOM WALK [J].
Aidekon, Elie .
ANNALS OF PROBABILITY, 2013, 41 (3A) :1362-1426
[4]   Change of measures for Markov chains and the LlogL theorem for branching processes [J].
Athreya, KB .
BERNOULLI, 2000, 6 (02) :323-338
[5]   Fixed points of the smoothing transform: the boundary case [J].
Biggins, JD ;
Kyprianou, AE .
ELECTRONIC JOURNAL OF PROBABILITY, 2005, 10 :609-631
[6]   Measure change in multitype branching [J].
Biggins, JD ;
Kyprianou, AE .
ADVANCES IN APPLIED PROBABILITY, 2004, 36 (02) :544-581
[7]   Random walk conditioned to stay positive [J].
Biggins, JD .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 :259-272
[8]   MARTINGALE CONVERGENCE IN BRANCHING RANDOM-WALK [J].
BIGGINS, JD .
JOURNAL OF APPLIED PROBABILITY, 1977, 14 (01) :25-37
[9]   A NECESSARY AND SUFFICIENT CONDITION FOR THE NONTRIVIAL LIMIT OF THE DERIVATIVE MARTINGALE IN A BRANCHING RANDOM WALK [J].
Chen, Xinxin .
ADVANCES IN APPLIED PROBABILITY, 2015, 47 (03) :741-760
[10]   FIXED-POINTS OF THE SMOOTHING TRANSFORMATION [J].
DURRETT, R ;
LIGGETT, TM .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 64 (03) :275-301