AI4WATER: A DIGITAL TWIN FOR IRRIGATED AGRICULTURE

被引:0
|
作者
Camps, A. [1 ,2 ,3 ]
Lopez-Martinez, C. [1 ,2 ]
Gonga, A. [1 ]
Gracia, G. [1 ]
Perez-Portero, A. [1 ]
Alonso-Gonzalez, A. [1 ]
Vallllosser, M. [1 ,2 ]
Park, H. [1 ,2 ]
Perez, V [4 ]
Caselles, O. [5 ]
Domenech, C. [6 ]
Catala, P. [6 ]
Ruiz-de-Azud, J. A. [7 ]
Solsona, M. [8 ]
机构
[1] Univ Politecn Catalunya UPC, Dept Signal Theory & Commun, CommSensLab UPC, Barcelona 08034, Spain
[2] Inst Estudis Espacials Catalunya IEEC, Barcelona 08034, Spain
[3] UAE Univ CoE, Al Ain 15551, U Arab Emirates
[4] Univ Politecn Catalunya UPC, Barcelona East Sch Engn EEBE, Dept Strength Mat & Struct Engn GIES, Barcelona 08019, Spain
[5] Univ Politecn Catalunya UPC, Barcelona Sch Civil Engn, Dept Civil & Environm Engn GIES, Barcelona 08033, Spain
[6] Univ Politecn Catalunya UPC, Dept Mech Engn, CDEI DM, Barcelona 08028, Spain
[7] i2CAT Fdn, Space Commun Res Grp, Barcelona 08034, Spain
[8] Univ Politecn Catalunya UPC, Agrotech UPC, Castelldefels 08860, Spain
关键词
digital twin; water resources; soil moisture; irrigated agriculture; EO data; soil moisture probes;
D O I
10.1109/IGARSS53475.2024.10641740
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
This study presents a Digital Twin (DT) that is being created to optimize the use of the available hydric resources, and mitigate the effects of the increasing water shortage in irrigated agriculture in fields in the Urgell channel region (Lleida). A DT is "a virtual representation of an object or system that spans its lifecycle, it is updated from real-time data, and uses simulation, machine learning and reasoning to help decision-making." It will model the water fluxes using the knowledge of the amounts of water taken in, used, and returned to the environment, and other parameters that impact the water budget, such as atmospheric variables (temperature, water vapor deficit, relative humidity, solar radiance.), surface soil moisture, and evapotranspiration maps, etc. Satellite Earth Observation (EO) data, collocated with in-situ data from a network of 20 soil moisture probes and 2 meteo stations will be used to train the DT. Additionally, a roverbased ground penetrating radar will be used for crosscalibration.
引用
收藏
页码:3545 / 3548
页数:4
相关论文
共 50 条
  • [31] EVALUATION OF A WATER MANAGEMENT MODEL FOR IRRIGATED AGRICULTURE.
    Chang, A.C.
    Skaggs, R.W.
    Hermsmeier, L.F.
    Johnston, W.R.
    Transactions of the American Society of Agricultural Engineers, 1983, 26 (02): : 412 - 418
  • [32] WATER MANAGEMENT FOR SUSTAINABILITY OF IRRIGATED AGRICULTURE: AN INDIAN PERSPECTIVE
    Dhiman, J.
    Dhiman, J. S.
    Aggarwal, R.
    Dhiman, M.
    INDIAN JOURNAL OF ECONOMICS AND DEVELOPMENT, 2015, 11 (03) : 601 - 622
  • [33] Conjunctive use of water resources for sustainable irrigated agriculture
    Singh, Ajay
    JOURNAL OF HYDROLOGY, 2014, 519 : 1688 - 1697
  • [34] Perspectives for Applicability of Low Quality Water in Irrigated Agriculture
    Kazandzhiev, Valentin
    Dimitrov, Peter
    AGRARIAN PERSPECTIVES, 2010, : 49 - 55
  • [35] Spatial dynamics of water and nitrogen management in irrigated agriculture
    Knapp, Keith C.
    Schwabe, Kurt A.
    AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, 2008, 90 (02) : 524 - 539
  • [36] A Monitoring Digital Twin for Services of Controlled Environment Agriculture
    Pablo Gonzalez, Juan
    Sanchez-Londono, David
    Barbieri, Giacomo
    IFAC PAPERSONLINE, 2022, 55 (19): : 85 - 90
  • [37] FarmBeats: Digital Water for Agriculture
    Malvar, Sara
    Badam, Anirudh
    Chandra, Ranveer
    Resource: Engineering and Technology for Sustainable World, 2022, 29 (04): : 40 - 42
  • [38] AI-driven Digital Twin for Optical Networks
    Zhuge, Qunbi
    2022 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC), 2022,
  • [39] AI Based Digital Twin Model for Cattle Caring
    Han, Xue
    Lin, Zihuai
    Clark, Cameron
    Vucetic, Branka
    Lomax, Sabrina
    SENSORS, 2022, 22 (19)
  • [40] AI on Digital Twin of Facility Captured by Reality Scans
    Shukla, Indu
    Agrawal, Rajeev K.
    Ervin, Kelly B.
    Boone, Jonathan
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS V, 2023, 12538