Fault Data Injection Detection on a Digital-Twin: Fresnel Solar Concentrator

被引:0
|
作者
Chicaiza, William D. [1 ]
Machado, Diogo O. [2 ]
Sanchez, Adolfo J. [3 ]
Escano, Juan M. [1 ]
Normey-Rico, Julio E. [4 ]
机构
[1] Univ Seville, Dept Ingn Sistemas & Automat, Camino Descubrimientos S-N, Seville 41092, Spain
[2] Inst Fed Educ Ciencia & Tecnol Rio Grande do Sul, Campus Rio Grande, Rio Grande, RS, Brazil
[3] Munster Technol Univ, Dept Mech, Biomed, Cork, Bishopstown, Ireland
[4] Univ Fed Santa Catarina, Dept Automacao & Sistemas, Florianopolis, SC, Brazil
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 14期
关键词
Solar energy; Fresnel solar collector; ANFIS; high pressure generator; absorption cooler;
D O I
10.1016/j.ifacol.2024.08.310
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work focuses on developing a neurofuzzy detector capable of identifying a cyber attack of false data injection into the outlet temperature sensor of a Fresnel-type solar field which has a PI+FF controller to control the refered temperature. A digital twin of the Fresnel plant and its controller are used for simulation purposes. The digital twin is situated in the domain of behavior and rules, as it contains a set of models, including a partial differential equation (PDE) model and a neurofuzzy model. Results from simulation are shown using three different scenarios: (1) without fault, (2) a ramp and threhold with negative injection and (3) the last scenario with positive injection. The presented fault data injection detector has solid performance with more than 97% detection accuracy and precision. Copyright (C)2024 The Authors. This is an open access article under the CC BY-NC-ND license (htips://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:37 / 42
页数:6
相关论文
共 50 条
  • [21] Fault injection in Digital Twin as a means to test the response to process faults at virtual commissioning
    Orive, Dario
    Iriondo, Nagore
    Burgos, Arantza
    Sarachaga, Isabel
    Luz Alvarez, Maria
    Marcos, Marga
    2019 24TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2019, : 1230 - 1234
  • [22] Digital Twin-Assisted Fault Diagnosis of Rotating Machinery Without Measured Fault Data
    Xia, Jingyan
    Huang, Ruyi
    Li, Jipu
    Chen, Zhuyun
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 1
  • [23] Study on Building Digital-Twin of Face-Milled Hypoid Gear From Measured Tooth Surface Topographical Data
    Lee, Yi-Hui
    Fong, Zhang-Hua
    JOURNAL OF MECHANICAL DESIGN, 2020, 142 (11)
  • [24] Implementing a Digital Twin-based fault detection and diagnosis approach for optimal operation and maintenance of urban distributed solar photovoltaics
    Kaitouni, Samir Idrissi
    Abdelmoula, Ibtihal Ait
    Es-sakali, Niima
    Mghazli, Mohamed Oualid
    Er-retby, Houda
    Zoubir, Zineb
    El Mansouri, Fouad
    Ahachad, Mohammed
    Brigui, Jamal
    RENEWABLE ENERGY FOCUS, 2024, 48
  • [25] Cyber-attack and Fault Detection using a Digital Twin of the Controller Software
    Kallesoe, Carsten Skovmose
    Wisniewski, Rafal
    IFAC PAPERSONLINE, 2024, 58 (04): : 97 - 102
  • [26] Digital Twin Service Unit Development for an EV Induction Motor Fault Detection
    Rjabtsikov, Viktor
    Ibrahim, Mahmoud
    Asad, Bilal
    Rassolkin, Anton
    Vaimann, Toomas
    Kallaste, Ants
    Kuts, Vladimir
    Stepien, Mariusz
    Krawczyk, Mateusz
    2023 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE, IEMDC, 2023,
  • [27] Digital twin-based fault detection for intelligent power production lines
    Zhou, You
    Qian, Xuefeng
    Xu, Dan
    Zhao, Can
    Qian, Kejun
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2024, 27 (04) : 385 - 392
  • [28] A digital twin solution for fault detection in time-critical IIoT applications
    Ranpariya, Amish
    Sharma, Sangeeta
    JOURNAL OF SIMULATION, 2025,
  • [29] Digital twin enabled fault detection and diagnosis process for building HVAC systems
    Xie, Xiang
    Merino, Jorge
    Moretti, Nicola
    Pauwels, Pieter
    Chang, Janet Yoon
    Parlikad, Ajith
    AUTOMATION IN CONSTRUCTION, 2023, 146
  • [30] Gas turbine aero engine fault detection using Geo-TLSVM and digital twin with multimodal data analysis
    Tadepalli, Naga Venkata Rama Subbarao
    Koona, Ramji
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (01):