Global solution for wave equation involving the fractional Laplacian with logarithmic nonlinearity

被引:0
|
作者
Younes, Bidi [1 ,2 ]
Beniani, Abderrahmane [3 ]
Zennir, Khaled [4 ]
Hajjej, Zayd [5 ]
Zhang, Hongwei [6 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Coll Sci, Dept Math, BP 89, Sidi Bel Abbes 22000, Algeria
[2] Univ Ain Temouchent, Ecole Normale Super Laghouat, Lab Math Pures & Appl, Ain Temouchent 46000, Algeria
[3] Univ Ain Temouchent, Fac Sci & Technol, Engn & Sustainable Dev Lab, Ain Temouchent 46000, Algeria
[4] Univ 20 Aout 1955 Skikda, Fac Sci, Dept Math, Skikda 21000, Algeria
[5] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[6] Henan Univ Technol, Dept Math, Zhengzhou 450001, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2024年 / 32卷 / 09期
关键词
fractional Laplacian; differential ff erential equations; global existence; partial differential ff erential equations; logarithmic nonlinearity; Galerkin approximations; EXISTENCE; SYSTEM;
D O I
10.3934/era.2024243
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct the global existence for a wave equation involving the fractional Laplacian with a logarithmic nonlinear source by using the Galerkin approximations. The corresponding results for equations with classical Laplacian are considered as particular cases of our assertions.
引用
收藏
页码:5268 / 5286
页数:19
相关论文
共 50 条
  • [1] Standing waves of nonlinear fractional p-Laplacian Schrodinger equation involving logarithmic nonlinearity
    Zhang, Lihong
    Hou, Wenwen
    APPLIED MATHEMATICS LETTERS, 2020, 102 (102)
  • [2] Global existence and dynamic structure of solutions for damped wave equation involving the fractional Laplacian
    Bidi, Younes
    Beniani, Abderrahmane
    Zennir, Khaled
    Himadan, Ahmed
    DEMONSTRATIO MATHEMATICA, 2021, 54 (01) : 245 - 258
  • [3] AN ANISOTROPIC TEMPERED FRACTIONAL p-LAPLACIAN MODEL INVOLVING LOGARITHMIC NONLINEARITY
    Zhang, Lihong
    Hou, Wenwen
    Nieto, Juan J.
    Wang, Guotao
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2024, 13 (01): : 1 - 11
  • [4] On a singular parabolic p-Laplacian equation with logarithmic nonlinearity
    Wu, Xiulan
    Zhao, Yanxin
    Yang, Xiaoxin
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2024, 16 (03): : 528 - 553
  • [5] Global well-posedness for the nonlinear damped wave equation with logarithmic type nonlinearity
    Yang, Lu
    Gao, Wei
    SOFT COMPUTING, 2020, 24 (04) : 2873 - 2885
  • [6] On Global Solution for a Class of p(x)-Laplacian Equations with Logarithmic Nonlinearity
    Quach Van Chuong
    Le Cong Nhan
    Le Xuan Truong
    Mediterranean Journal of Mathematics, 2024, 21
  • [7] On a class of capillarity phenomenon with logarithmic nonlinearity involving θ(•)-Laplacian operator
    Elhoussain, Arhrrabi
    Hamza, El-Houari
    da C. Sousa, J. Vanterler
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (06)
  • [8] On Global Solution for a Class of p(x)-Laplacian Equations with Logarithmic Nonlinearity
    Chuong, Quach Van
    Nhan, Le Cong
    Truong, Le Xuan
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (02)
  • [9] THE CAUCHY PROBLEM FOR HEAT EQUATION WITH FRACTIONAL LAPLACIAN AND EXPONENTIAL NONLINEARITY
    Fino, Ahmad Z.
    Kirane, Mokhtar
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (07) : 3625 - 3650
  • [10] Local Existence and Blow-Up of Solutions for Wave Equation Involving the Fractional Laplacian with Nonlinear Source Term
    Bidi, Younes
    Beniani, Abderrahmane
    Bouhali, Keltoum
    Zennir, Khaled
    ElKhair, Hatim M.
    Hassan, Eltegani I.
    Alarfaj, Almonther
    AXIOMS, 2023, 12 (04)