TECHNO-ECONOMIC MODELING OF CO2 HYDRATE SLURRY FORMATION FOR CARBON SEQUESTRATION

被引:0
|
作者
Bahadur, Vaibhav [1 ]
Bhati, Awan [1 ]
机构
[1] Univ Texas Austin, Austin, TX 78712 USA
来源
PROCEEDINGS OF ASME 2024 18TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, ES2024 | 2024年
关键词
Carbon capture and sequestration; CO2; hydrates; bubble column reactor; techno-economic modeling; hydrate slurry; CAPTURE; OCEAN;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Significant carbon sequestration capacity (up to 10 Gigatons/yr) will be needed by 2050 to limit the Earth's temperature rise to < 1.5 degrees C. The current worldwide capacity is similar to 40MT/yr, which highlights the need for the development of new and scalable sequestration approaches. One novel technology for long-term sequestration of CO2 is the deposition of CO2 hydrates (ice-like solids made with water and CO2) on the seabed (under marine sediments or with artificial sealing). This involves rapid formation of CO2 hydrate slurries in a bubble column reactor (BCR) by bubbling CO2 gas at high flow rates in a BCR with the unreacted CO2 being recirculated; this approach is being pioneered by the present research group. This study utilizes recent experimental results on ultra-fast hydrate formation to conduct a techno-economic analysis of the hydrate slurry-making process. All analysis is conducted for a 1 Megaton/yr sequestration project, which is expected to run for 30 years. Our analysis shows that the total cost of hydrate slurry production is $16.2/ton. Such projects would require an initial investment of $74M, and the energy requirement will be 641 MWh/day. Contributions of each part of the process to the total cost are identified. Our results show that gas recirculation in a BCR contributes minimally (0.04%) to the overall energy requirement. Furthermore, the cost of BCR is only 0.3% of the total investment cost. This suggests that a low conversion of gas into hydrates in each pass of the BCR is not detrimental from a techno-economic standpoint. The findings of this study set the stage for more detailed analysis of hydrates-based sequestration, which is essential to add this technology to the existing bank of established carbon sequestration solutions.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] A critical review on the techno-economic analysis of membrane gas absorption for CO2 capture
    Chang, Pei Thing
    Ng, Qi Hwa
    Ahmad, Abdul Latif
    Low, Siew Chun
    CHEMICAL ENGINEERING COMMUNICATIONS, 2022, 209 (11) : 1553 - 1569
  • [22] A comprehensive techno-economic analysis method for power generation systems with CO2 capture
    Xu, Gang
    Jin, HongGuang
    Yang, YongPing
    Xu, YuJie
    Lin, Hu
    Duan, Liqiang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2010, 34 (04) : 321 - 332
  • [23] Techno-economic analysis of integrated hydrogen and methanol production process by CO2 hydrogenation
    Yousaf, Muhammad
    Mahmood, Asif
    Elkamel, Ali
    Rizwan, Muhammad
    Zaman, Muhammad
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2022, 115
  • [24] The cost of impurities: A techno-economic assessment on conditioning of captured CO2 to commercial specifications
    Jensen, Ebbe Hauge
    Pedersen, Rikke Cilius
    Loge, Isaac Appelquist
    Dlamini, Gcinisiawe Msimisi
    Neerup, Randi
    Riber, Christian
    Elmegaard, Brian
    Jensen, Jonas Kjaer
    Fosbol, Philip Loldrup
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2025, 141
  • [25] Techno-Economic Assessment of Different Heat Exchangers for CO2 Capture
    Aromada, Solomon Aforkoghene
    Eldrup, Nils Henrik
    Normann, Fredrik
    Oi, Lars Erik
    ENERGIES, 2020, 13 (23)
  • [26] Techno-economic Evaluation of Cryogenic Networks for Separation of CO2 from Natural Gas
    Maqsood, Khuram
    Ali, Abulhassan
    Shariff, Azmi B. Mohd.
    Ganguly, Saibal
    PROCESS AND ADVANCED MATERIALS ENGINEERING, 2014, 625 : 635 - 638
  • [27] CO2 Utilization Pathways: Techno-Economic Assessment and Market Opportunities
    Perez-Fortes, Mar
    Bocin-Dumitriu, Andrei
    Tzimas, Evangelos
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 7968 - 7975
  • [28] Process modeling, techno-economic assessment, and life cycle assessment of the electrochemical reduction of CO2: a review
    Somoza-Tornos, Ana
    Guerra, Omar J.
    Crow, Allison M.
    Smith, Wilson A.
    Hodge, Bri-Mathias
    ISCIENCE, 2021, 24 (07)
  • [29] Techno-economic evaluation of CO2 enhanced oil recovery (EOR) with the optimization of CO2 supply
    Kwak, Dong-Hun
    Kim, Jin-Kuk
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2017, 58 : 169 - 184
  • [30] Prospective techno-economic and environmental assessment of carbon capture at a refinery and CO2 utilisation in polyol synthesis
    Fernandez-Dacosta, Cora
    van der Spek, Mijndert
    Hung, Christine Roxanne
    Oregionni, Gabriel David
    Skagestad, Ragnhild
    Parihar, Prashant
    Gokak, D. T.
    Stromman, Anders Hammer
    Ramirez, Andrea
    JOURNAL OF CO2 UTILIZATION, 2017, 21 : 405 - 422