Advances in small droplets manipulation on bio-inspired slippery surfaces: chances and challenges

被引:0
|
作者
Zhang, Wenhao [1 ]
Wang, Xiaobo [1 ]
Guo, Zhiguang [1 ,2 ]
机构
[1] Hubei Univ, Minist Educ, Key Lab Green Preparat & Applicat Funct Mat, Wuhan 430062, Peoples R China
[2] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
LASER-ABLATION; TRANSPORT; DESIGN; WETTABILITY; MOBILITY;
D O I
10.1039/d4mh01666a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The manipulation of droplets with non-destructive, efficient, and high-precision features is of great importance in several fields, including microfluidics and biomedicine. The lubrication layer of bioinspired slippery surfaces demonstrates remarkable stability and self-restoration capabilities when subjected to external perturbations. Consequently, research into the manipulation of droplets on slippery surfaces has continued to make progress. This paper presents a review of the methods of droplet manipulation on bioinspired slippery surfaces. It begins by outlining the basic theory of slippery surfaces and the mechanism of droplet motion on slippery surfaces. Furthermore, droplet manipulation methods on slippery surfaces are classified into active and passive approaches based on the presence of external stimuli (e.g., heat, light, electricity, and magnetism). Finally, an outlook is provided on the current challenges facing droplet manipulation on slippery surfaces, and potential solution ideas are presented.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Bio-inspired slippery surfaces with multifunctional anti-icing performance
    MIAO ShuangShuang
    WANG Yu
    ZHAO YuanJin
    CHEN YongPing
    Science China(Technological Sciences), 2021, (10) : 2110 - 2118
  • [2] Bio-inspired slippery surfaces with multifunctional anti-icing performance
    MIAO ShuangShuang
    WANG Yu
    ZHAO YuanJin
    CHEN YongPing
    Science China(Technological Sciences), 2021, 64 (10) : 2110 - 2118
  • [3] Bio-inspired slippery surfaces with multifunctional anti-icing performance
    ShuangShuang Miao
    Yu Wang
    YuanJin Zhao
    YongPing Chen
    Science China Technological Sciences, 2021, 64 : 2110 - 2118
  • [4] Bio-inspired slippery surfaces with multifunctional anti-icing performance
    Miao ShuangShuang
    Wang Yu
    Zhao YuanJin
    Chen YongPing
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (10) : 2110 - 2118
  • [5] Advances in Bio-inspired Smart Surfaces with Special Wettability
    Du Chen-Guang
    Xia Fan
    Wang Shu-Tao
    Wang Jing-Xia
    Song Yan-Lin
    Jiang Lei
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2010, 31 (03): : 421 - 431
  • [6] Bio-inspired manipulation and robotics
    Shen, Bo
    ASSEMBLY AUTOMATION, 2016, 36 (02) : 109 - 110
  • [7] Recent advances of bio-inspired anti-icing surfaces
    Jiang, Shanshan
    Diao, Yunhe
    Yang, Huige
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2022, 308
  • [8] Recent advances of bio-inspired anti-icing surfaces
    Jiang, Shanshan
    Diao, Yunhe
    Yang, Huige
    Advances in Colloid and Interface Science, 2022, 308
  • [9] Bio-inspired control of dexterous manipulation
    Herrera, RM
    Leoni, F
    AI 2005: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2005, 3809 : 1319 - 1322
  • [10] Bio-inspired slippery surfaces with a hierarchical groove structure for efficient fog collection at low temperature
    Xu, Jinlong
    Wan, Yanling
    Lian, Zhongxu
    Hou, Yonggang
    Xu, Jinkai
    Yu, Huadong
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 643