Selective filtering of photonic quantum entanglement via anti-parity-time symmetry

被引:1
作者
Selim, Mahmoud A. [1 ]
Ehrhardt, Max [2 ]
Ding, Yuqiang [3 ]
Dinani, Hediyeh M. [1 ]
Zhong, Qi [3 ,4 ,5 ]
Perez-Leija, Armando [3 ]
Ozdemir, Sahin K. [4 ,5 ]
Heinrich, Matthias [2 ]
Szameit, Alexander [2 ]
Christodoulides, Demetrios N. [1 ,6 ]
Khajavikhan, Mercedeh [1 ,6 ]
机构
[1] Univ Southern Calif, Ming Hsieh Dept Elect & Comp Engn, Los Angeles, CA 90007 USA
[2] Univ Rostock, Inst Phys, Albert Einstein Str 23, Rostock, Germany
[3] Univ Cent Florida, Coll Opt & Photon, CREOL, Orlando, FL USA
[4] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA USA
[5] St Louis Univ, Dept Elect & Comp Engn, St. Louis, MO USA
[6] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90007 USA
关键词
DECOHERENCE; PHYSICS; LASER;
D O I
10.1126/science.adu3777
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Entanglement is a key resource for quantum computing, sensing, and communication, but it is susceptible to decoherence. To address this, research in quantum optics has explored filtering techniques such as photon ancillas and Rydberg atom blockade to restore entangled states. We introduce an approach to entanglement retrieval that exploits the features of non-Hermitian systems. By designing an anti-parity-time two-state guiding configuration, we demonstrate efficient extraction of entanglement from any input state. This filter is implemented on a lossless waveguide network and achieves near-unity fidelity under single- and two-photon excitation and is scalable to higher photon levels, remaining robust against decoherence during propagation. Our results offer an approach to using non-Hermitian symmetries to address central challenges in quantum technologies.
引用
收藏
页码:1424 / 1428
页数:5
相关论文
共 44 条
  • [1] Generating high-order quantum exceptional points in synthetic dimensions
    Arkhipov, Ievgen I.
    Minganti, Fabrizio
    Miranowicz, Adam
    Nori, Franco
    [J]. PHYSICAL REVIEW A, 2021, 104 (01)
  • [2] Benenti G., 2019, Principles of Quantum Computation and Information, Volume II: Basic Tools and Special Topics
  • [3] Quantum cryptography
    Gisin, N
    Ribordy, GG
    Tittel, W
    Zbinden, H
    [J]. REVIEWS OF MODERN PHYSICS, 2002, 74 (01) : 145 - 195
  • [4] Exceptional points enhance sensing in an optical microcavity
    Chen, Weijian
    Ozdemir, Sahin Kaya
    Zhao, Guangming
    Wiersig, Jan
    Yang, Lan
    [J]. NATURE, 2017, 548 (7666) : 192 - +
  • [5] QUANTUM COMPUTATION
    DIVINCENZO, DP
    [J]. SCIENCE, 1995, 270 (5234) : 255 - 261
  • [6] Dynamically encircling an exceptional point for asymmetric mode switching
    Doppler, Jorg
    Mailybaev, Alexei A.
    Bohm, Julian
    Kuhl, Ulrich
    Girschik, Adrian
    Libisch, Florian
    Milburn, Thomas J.
    Rabl, Peter
    Moiseyev, Nimrod
    Rotter, Stefan
    [J]. NATURE, 2016, 537 (7618) : 76 - 79
  • [7] QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM
    EKERT, AK
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (06) : 661 - 663
  • [8] El-Ganainy R, 2018, NAT PHYS, V14, P11, DOI [10.1038/nphys4323, 10.1038/NPHYS4323]
  • [9] Single-mode laser by parity-time symmetry breaking
    Feng, Liang
    Wong, Zi Jing
    Ma, Ren-Min
    Wang, Yuan
    Zhang, Xiang
    [J]. SCIENCE, 2014, 346 (6212) : 972 - 975
  • [10] SIMULATING PHYSICS WITH COMPUTERS
    FEYNMAN, RP
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (6-7) : 467 - 488