IJMPR Didactic Paper: Weighting for Causal Inference in Mental Health Research

被引:0
作者
Cohn, Eric R. [1 ]
Zubizarreta, Jose R. [2 ,3 ,4 ]
机构
[1] Westat Corp, New York, NY USA
[2] Harvard Med Sch, Dept Hlth Care Policy, Boston, MA 02115 USA
[3] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[4] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
基金
巴西圣保罗研究基金会;
关键词
causal inference; covariate balance; inverse probability weighting; observational studies; propensity scores; world mental health; PROPENSITY SCORE ESTIMATION; REGRESSION; VERSION;
D O I
10.1002/mpr.70018
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Objective: Inverse probability weighting is a fundamental and general methodology for estimating the causal effects of exposures and interventions, but standard approaches to constructing such weights are often suboptimal. Methods: In this paper, we describe a recent approach for constructing such weights that directly balances covariates while optimizing the stability of the resulting weighting estimator. Results: To illustrate the use of this approach in mental health research, we present an exploratory study of the effects of exposure to violence on the risk of suicide attempt. Conclusions: The direct balancing approach to weighting should be given strong consideration in empirical research due to its robustness and transparency in building weighting estimators.
引用
收藏
页数:11
相关论文
共 41 条
[1]  
Ben-Michael E, 2021, Arxiv, DOI [arXiv:2110.14831, 10.48550/arXiv.2110.14831, DOI 10.48550/ARXIV.2110.14831]
[2]   The epidemiology of traumatic event exposure worldwide: results from the World Mental Health Survey Consortium [J].
Benjet, C. ;
Bromet, E. ;
Karam, E. G. ;
Kessler, R. C. ;
McLaughlin, K. A. ;
Ruscio, A. M. ;
Shahly, V. ;
Stein, D. J. ;
Petukhova, M. ;
Hill, E. ;
Alonso, J. ;
Atwoli, L. ;
Bunting, B. ;
Bruffaerts, R. ;
Caldas-de-Almeida, J. M. ;
de Girolamo, G. ;
Florescu, S. ;
Gureje, O. ;
Huang, Y. ;
Lepine, J. P. ;
Kawakami, N. ;
Kovess-Masfety, Viviane ;
Medina-Mora, M. E. ;
Navarro-Mateu, F. ;
Piazza, M. ;
Posada-Villa, J. ;
Scott, K. M. ;
Shalev, A. ;
Slade, T. ;
ten Have, M. ;
Torres, Y. ;
Viana, M. C. ;
Zarkov, Z. ;
Koenen, K. C. .
PSYCHOLOGICAL MEDICINE, 2016, 46 (02) :327-343
[3]  
Chattopadhyay A., 2024, HARVARD DATA SCI REV, V6, P1, DOI [10.1162/99608f92.87c6125f, DOI 10.1162/99608F92.87C6125F]
[4]   One-Step Weighting to Generalize and Transport Treatment Effect Estimates to a Target Population [J].
Chattopadhyay, Ambarish ;
Cohn, Eric R. ;
Zubizarreta, Jose R. .
AMERICAN STATISTICIAN, 2024, 78 (03) :280-289
[5]   On the implied weights of linear regression for causal inference [J].
Chattopadhyay, Ambarish ;
Zubizarreta, Jose R. .
BIOMETRIKA, 2023, :615-629
[6]   Balancing vs modeling approaches to weighting in practice [J].
Chattopadhyay, Ambarish ;
Hase, Christopher H. ;
Zubizarreta, Jose R. .
STATISTICS IN MEDICINE, 2020, 39 (24) :3227-3254
[7]   Automatic Debiased Machine Learning of Causal and Structural Effects [J].
Chernozhukov, Victor ;
Newey, Whitney K. ;
Singh, Rahul .
ECONOMETRICA, 2022, 90 (03) :967-1027
[8]  
Cohn E R., 2023, Handbook of Matching and Weighting Adjustments for Causal Inference, P293, DOI DOI 10.1201/9781003102670
[9]   Suicidal ideation following self-reported COVID-19-like symptoms or serology-confirmed SARS-CoV-2 infection in France: A propensity score weighted analysis from a cohort study [J].
Davisse-Paturet, Camille ;
Orri, Massimiliano ;
Legleye, Stephane ;
Florence, Aline-Marie ;
Hazo, Jean-Baptiste ;
Warszawski, Josiane ;
Falissard, Bruno ;
Geoffroy, Marie-Claude ;
Melchior, Maria ;
Rouquette, Alexandra .
PLOS MEDICINE, 2023, 20 (02)
[10]   A Bracketing Relationship between Difference-in-Differences and Lagged-Dependent-Variable Adjustment [J].
Ding, Peng ;
Li, Fan .
POLITICAL ANALYSIS, 2019, 27 (04) :605-615