THE CAUCHY PROBLEM FOR THE HEAT EQUATION WITH A FRACTIONAL LOAD

被引:1
作者
Agarwal, Praveen [1 ,2 ,3 ]
Hubert, Florence [4 ]
Dermenjian, Yves [4 ]
Baltaeva, Umida [1 ,2 ,5 ,6 ]
Hasanov, Bobur [1 ,2 ,5 ]
机构
[1] Anand Int Coll Engn, Dept Math, Jaipur 303012, Rajasthan, India
[2] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, Ajman, U Arab Emirates
[3] Int Ctr Basic & Appl Sci, Jaipur 302029, India
[4] Aix Marseille Univ, CNRS, I2M, Marseille, France
[5] Khorezm Mamun Acad, Dept Exact Sci, Khiva, Uzbekistan
[6] Urgench State Univ, Dept Appl Math & Math Phys, Urgench, Uzbekistan
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2024年
关键词
Heat equation; Cauchy problem; loaded equation; fractional operator;
D O I
10.3934/dcdss.2024176
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the solvability of a direct problem for a multidimensional fractionally loaded heat equation in Holder spaces. In the problem under consideration, the loaded term is represented in the form of a fractional Riemann-Liouville integral operator with respect to the time variable. This study aims to prove unique solvability and construct a representation of the solution to the problem by the method of the integral equation.
引用
收藏
页数:12
相关论文
共 33 条
[11]   Numerical methods for heat equation with variable coefficients [J].
Butt, M. M. ;
Taj, M. S. A. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (09) :1612-1623
[12]   Green's function for second order parabolic systems with Neumann boundary condition [J].
Choi, Jongkeun ;
Kim, Seick .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (07) :2834-2860
[13]   Existence of Waves for a Nonlocal Reaction-Diffusion Equation [J].
Demin, I. ;
Volpert, V. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2010, 5 (05) :80-101
[14]  
Dikinov H. ., 1976, Differ. Uravn, V12, P177
[15]   ON INVESTIGATION OF THE INVERSE PROBLEM FOR A PARABOLIC INTEGRO-DIFFERENTIAL EQUATION WITH A VARIABLE COEFFICIENT OF THERMAL CONDUCTIVITY [J].
Durdiev, D. K. ;
Nuriddinov, J. Z. .
VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2020, 30 (04) :572-584
[16]  
Islomov B, 2015, ELECTRON J DIFFER EQ
[17]  
Jenaliyev MT., 2017, INT J PURE APPL MATH, V113, P527
[18]  
Jungel A, 2010, MODEL SIMUL SCI ENG, P397, DOI 10.1007/978-0-8176-4946-3_15
[19]  
Khubiev K. U., 2022, J. Math. Sci., V260, P387
[20]   ON FRACTIONAL HEAT EQUATION [J].
Kochubei, Anatoly N. ;
Kondratiev, Yuri ;
da Silva, Jose Luis .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (01) :73-87