THE CAUCHY PROBLEM FOR THE HEAT EQUATION WITH A FRACTIONAL LOAD

被引:1
作者
Agarwal, Praveen [1 ,2 ,3 ]
Hubert, Florence [4 ]
Dermenjian, Yves [4 ]
Baltaeva, Umida [1 ,2 ,5 ,6 ]
Hasanov, Bobur [1 ,2 ,5 ]
机构
[1] Anand Int Coll Engn, Dept Math, Jaipur 303012, Rajasthan, India
[2] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, Ajman, U Arab Emirates
[3] Int Ctr Basic & Appl Sci, Jaipur 302029, India
[4] Aix Marseille Univ, CNRS, I2M, Marseille, France
[5] Khorezm Mamun Acad, Dept Exact Sci, Khiva, Uzbekistan
[6] Urgench State Univ, Dept Appl Math & Math Phys, Urgench, Uzbekistan
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2024年
关键词
Heat equation; Cauchy problem; loaded equation; fractional operator;
D O I
10.3934/dcdss.2024176
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the solvability of a direct problem for a multidimensional fractionally loaded heat equation in Holder spaces. In the problem under consideration, the loaded term is represented in the form of a fractional Riemann-Liouville integral operator with respect to the time variable. This study aims to prove unique solvability and construct a representation of the solution to the problem by the method of the integral equation.
引用
收藏
页数:12
相关论文
共 33 条
[1]   A generalized heat conduction model of higher-order time derivatives and three-phase-lags for non-simple thermoelastic materials [J].
Abouelregal, Ahmed E. ;
Khalil, K. M. ;
Mohammed, F. A. ;
Nasr, M. E. ;
Zakaria, Adam ;
Ahmed, Ibrahim-Elkhalil .
SCIENTIFIC REPORTS, 2020, 10 (01)
[2]   Solvability of the boundary-value problem for a linear loaded integro-differential equation in an infinite three-dimensional domain [J].
Agarwal, Praveen ;
Baltaeva, Umida ;
Alikulov, Yolqin .
CHAOS SOLITONS & FRACTALS, 2020, 140
[3]   Nonlinear fractional integro-differential reaction-diffusion equation via radial basis functions [J].
Aslefallah, Mohammad ;
Shivanian, Elyas .
EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (03)
[4]   A piecewise heat equation with constant and variable order coefficients: A new approach to capture crossover behaviors in heat diffusion [J].
Atangana, Abdon ;
Toufik, Mekkaoui .
AIMS MATHEMATICS, 2022, 7 (05) :8374-8389
[5]   Extension of the Tricomi problem for a loaded parabolic-hyperbolic equation with a characteristic line of change of type [J].
Baltaeva, Umida ;
Agarwal, Praveen ;
Momani, Shaher .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (12) :12190-12199
[6]   Boundary-value problems for the third-order loaded equation with noncharacteristic type-change boundaries [J].
Baltaeva, Umida ;
Agarwal, Praveen .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (09) :3307-3315
[7]   Some Gronwall-Bellman Inequalities on Time Scales and Their Continuous Forms: A Survey [J].
Barich, Francesca .
SYMMETRY-BASEL, 2021, 13 (02) :1-15
[8]   Dynamics of a strongly nonlocal reaction-diffusion population model [J].
Billingham, J .
NONLINEARITY, 2004, 17 (01) :313-346
[9]  
Bitsadze A. V., 1981, SOME CLASSES PARTIAL
[10]   Optimal existence and uniqueness theory for the fractional heat equation [J].
Bonforte, Matteo ;
Sire, Yannick ;
Luis Vazquez, Juan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 153 :142-168