AnoOnly: Semi-supervised anomaly detection with the only loss on anomalies

被引:1
作者
Zhou, Yixuan [1 ,2 ]
Yang, Peiyu [1 ,2 ]
Qu, Yi [1 ,2 ]
Xu, Xing [1 ,2 ,3 ]
Sun, Zhe [4 ]
Cichocki, Andrzej [5 ]
机构
[1] Univ Elect Sci & Technol China, Ctr Future Media, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Peoples R China
[3] Tongji Univ, Sch Comp Sci & Technol, Shanghai, Peoples R China
[4] Juntendo Univ, Tokyo, Japan
[5] RIKEN, Tokyo, Japan
基金
中国国家自然科学基金;
关键词
Anomaly detection; Semi-supervised learning; Batch normalization; Cluster learning;
D O I
10.1016/j.eswa.2024.125597
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised anomaly detection (SSAD) methods have demonstrated their effectiveness in enhancing unsupervised anomaly detection (UAD) by leveraging few-shot but instructive abnormal instances. However, the dominance of homogeneous normal data over anomalies biases the SSAD models against effectively perceiving anomalies. To address this issue and achieve balanced supervision between heavily imbalanced normal and abnormal data, we develop a novel framework called AnoOnly (Anomaly Only). Unlike existing SSAD methods that resort to strict loss supervision, AnoOnly suspends it for normal data and introduces a form of weak supervision. This weak supervision is instantiated through the utilization of batch normalization, which implicitly performs cluster learning on normal data. When integrated into existing SSAD methods, the proposed AnoOnly demonstrates remarkable performance enhancements across various models and datasets, achieving new state-of-the-art performance. Additionally, our AnoOnly is natively robust to label noise when suffering from data contamination. Our code is publicly available at https://github.com/cool-xuan/AnoOnly.
引用
收藏
页数:12
相关论文
共 63 条
[1]   GANomaly: Semi-supervised Anomaly Detection via Adversarial Training [J].
Akcay, Samet ;
Atapour-Abarghouei, Amir ;
Breckon, Toby P. .
COMPUTER VISION - ACCV 2018, PT III, 2019, 11363 :622-637
[2]  
Shah SA, 2018, Arxiv, DOI [arXiv:1803.01449, DOI 10.48550/ARXIV.1803.01449]
[3]  
Ba J. L., 2016, arXiv
[4]   MVTec AD - A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection [J].
Bergmann, Paul ;
Fauser, Michael ;
Sattlegger, David ;
Steger, Carsten .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :9584-9592
[5]   Structural Deep Clustering Network [J].
Bo, Deyu ;
Wang, Xiao ;
Shi, Chuan ;
Zhu, Meiqi ;
Lu, Emiao ;
Cui, Peng .
WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, :1400-1410
[6]   A systematic study of the class imbalance problem in convolutional neural networks [J].
Buda, Mateusz ;
Maki, Atsuto ;
Mazurowski, Maciej A. .
NEURAL NETWORKS, 2018, 106 :249-259
[7]   Deep Clustering for Unsupervised Learning of Visual Features [J].
Caron, Mathilde ;
Bojanowski, Piotr ;
Joulin, Armand ;
Douze, Matthijs .
COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 :139-156
[8]   A framework for anomaly detection and classification in Multiple IoT scenarios [J].
Cauteruccio, Francesco ;
Cinelli, Luca ;
Corradini, Enrico ;
Terracina, Giorgio ;
Ursino, Domenico ;
Virgili, Luca ;
Savaglio, Claudio ;
Liotta, Antonio ;
Fortino, Giancarlo .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 114 :322-335
[9]  
Chalapathy R, 2019, Arxiv, DOI [arXiv:1901.03407, 10.48550/ARXIV.1901.03407, DOI 10.48550/ARXIV.1901.03407]
[10]   Anomaly Detection: A Survey [J].
Chandola, Varun ;
Banerjee, Arindam ;
Kumar, Vipin .
ACM COMPUTING SURVEYS, 2009, 41 (03)