Lipid core-chitosan shell hybrid nanoparticles for enhanced oral bioavailability of sorafenib

被引:1
作者
Sahar, Najam us [1 ]
Gul, Maleeha [1 ]
Choi, Ho-Ik [2 ]
Ryu, Jeong-Su [2 ]
Noh, Ha-Yeon [2 ]
Vo, Dang-Khoa [3 ]
Nguyen, Thu-Hang [3 ]
Ansari, Muhammad Mohsin [1 ]
Kim, Wondong [2 ]
Maeng, Han-Joo [3 ]
Zeb, Alam [1 ,2 ]
Kim, Jin-Ki [2 ]
机构
[1] Riphah Int Univ, Riphah Inst Pharmaceut Sci, Islamabad 44000, Pakistan
[2] Hanyang Univ, Inst Pharmaceut Sci & Technol, Coll Pharm, ERICA, Ansan 15588, South Korea
[3] Gachon Univ, Coll Pharm, 191 Hambakmoe Ro, Incheon 21936, South Korea
基金
新加坡国家研究基金会;
关键词
Sorafenib; Poor water solubility; Lipid core-chitosan shell hybrid nanoparticles; DRUG-DELIVERY; COLLOIDAL STABILITY; ANTITUMOR-ACTIVITY; IN-VITRO; PH; PHARMACOKINETICS; ABSORPTION; POLYMER; ENCAPSULATION; DISSOLUTION;
D O I
10.1016/j.ijbiomac.2025.140030
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Limited aqueous solubility is a major hurdle resulting in poor and variable oral bioavailability, high doses, side effects, and the suboptimal therapeutic efficacy of sorafenib (SRF). In this study, we developed SRF-loaded solid lipid nanoparticles (SRF-SLNs) and lipid core-chitosan shell hybrid nanoparticles (CS-SRF-SLNs) to improve the oral absorption of SRF. SRF-SLNs were prepared using a stearyl alcohol core stabilized with a surfactant mixture, followed by surface decoration with chitosan to form CS-SRF-SLNs. The developed SRF-SLNs and CS-SRF-SLNs displayed uniform and well-separated spherical particles with small particle size (112.2 and 124.6 nm), low PDI (0.114 and 0.148), adequate zeta potential (-18.6 and +21.2 mV) and high encapsulation efficiency (92.0 and 91 %). Thermal and crystallinity studies (DSC and PXRD) confirmed the successful incorporation of SRF into the lipid matrix and its conversion to the amorphous state. The CS-SRF-SLNs demonstrated sustained SRF release in simulated gastric and intestinal fluids with improved aqueous solubility. Following oral administration to rats, CS-SRF-SLNs significantly improved SRF bioavailability compared with SRF-SLNs and SRF dispersion. Collectively, CS-SRF-SLNs were found to be superior to SRF-SLNs owing to their better sustained-release profile and pharmacokinetic parameters, thereby demonstrating their usefulness for oral delivery by minimizing the solubility-related issues of SRF.
引用
收藏
页数:14
相关论文
共 87 条
[21]   Enhanced oral bioavailability and antitumor therapeutic efficacy of sorafenib administered in core-shell protein nanoparticle [J].
Gopakumar, Lekshmi ;
Sreeranganathan, Maya ;
Chappan, Shalin ;
James, Sneha ;
Gowd, Genekehal Siddaramana ;
Manohar, Maneesh ;
Sukumaran, Arya ;
Unni, Ayalur Kodakara Kochugovindan ;
Nair, Shantikumar Vasudevan ;
Koyakutty, Manzoor .
DRUG DELIVERY AND TRANSLATIONAL RESEARCH, 2022, 12 (11) :2824-2837
[22]   Formulation optimization, in vitro and in vivo evaluation of agomelatine-loaded nanostructured lipid carriers for augmented antidepressant effects [J].
Gul, Maleeha ;
Shah, Fawad Ali ;
Sahar, Najam-us ;
Malik, Imran ;
Din, Fakhar ud ;
Khan, Saeed Ahmad ;
Aman, Waqar ;
Choi, Ho-Ik ;
Lim, Chang-Wan ;
Noh, Ha-Yeon ;
Noh, Jin-Su ;
Zeb, Alam ;
Kim, Jin-Ki .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2022, 216
[23]   Improving anti-tumor activity of sorafenib tosylate by lipid- and polymer-coated nanomatrix [J].
Guo, Yang ;
Zhong, Ting ;
Duan, Xiao-Chuan ;
Zhang, Shuang ;
Yao, Xin ;
Yin, Yi-Fan ;
Huang, Dan ;
Ren, Wei ;
Zhang, Qiang ;
Zhang, Xuan .
DRUG DELIVERY, 2017, 24 (01) :270-277
[24]   pH-Dependent Solubility and Dissolution Behavior of Carvedilol-Case Example of a Weakly Basic BCS Class II Drug [J].
Hamed, Rania ;
Awadallah, Areeg ;
Sunoqrot, Suhair ;
Tarawneh, Ola ;
Nazzal, Sami ;
AlBaraghthi, Tamadur ;
Al Sayyad, Jihan ;
Abbas, Aiman .
AAPS PHARMSCITECH, 2016, 17 (02) :418-426
[25]   Solid lipid nanoparticles: an oral bioavailability enhancer vehicle [J].
Harde, Harshad ;
Das, Manasmita ;
Jain, Sanyog .
EXPERT OPINION ON DRUG DELIVERY, 2011, 8 (11) :1407-1424
[26]   Saturable absorption of sorafenib in patients with solid tumors: a population model [J].
Hornecker, Marilyne ;
Blanchet, Benoit ;
Billemont, Bertrand ;
Sassi, Hind ;
Ropert, Stanislas ;
Taieb, Fabrice ;
Mir, Olivier ;
Abbas, Halim ;
Harcouet, Laura ;
Coriat, Romain ;
Dauphin, Alain ;
Goldwasser, Francois ;
Tod, Michel .
INVESTIGATIONAL NEW DRUGS, 2012, 30 (05) :1991-2000
[27]   The production and characteristics of solid lipid nanoparticles (SLNs) [J].
Hou, DZ ;
Xie, CS ;
Huang, KJ ;
Zhu, CH .
BIOMATERIALS, 2003, 24 (10) :1781-1785
[28]   O-carboxymethyl chitosan/fucoidan nanoparticles increase cellular curcumin uptake [J].
Huang, Yi-Cheng ;
Kuo, Tzu-Hung .
FOOD HYDROCOLLOIDS, 2016, 53 :261-269
[29]   PEGylation for enhancing nanoparticle diffusion in mucus [J].
Huckaby, Justin T. ;
Lai, Samuel K. .
ADVANCED DRUG DELIVERY REVIEWS, 2018, 124 :125-139
[30]  
ICH, 2019, ICH guideline M10 on bioanalytical method validation and study sample analysis