Interface regulation via bidentate π-chelators for high-performance perovskite solar cells

被引:0
|
作者
Han, Mengting [1 ,5 ]
Sun, Aiqing [1 ,5 ]
Ren, Yingke [3 ]
Yang, Zhiqian [1 ,5 ]
Li, Zhaoqian [1 ]
Mo, Li'e [1 ,5 ]
Zhang, Hong [4 ]
Zhang, Xianxi [2 ]
Huang, Yang [1 ,6 ]
Hu, Linhua [1 ,5 ]
机构
[1] Chinese Acad Sci, Inst Solid State Phys, Hefei Inst Phys Sci, Key Lab Photovolta & Energy Conservat Mat CAS, Hefei 230031, Peoples R China
[2] Liaocheng Univ, Sch Chem & Chem Engn, Storage & Novel Cell Technol, Liaocheng 252000, Shandong, Peoples R China
[3] Hebei Univ Sci & Technol, Coll Sci, Shijiazhuang 050018, Peoples R China
[4] Hebei Univ Engn, Hebei Computat Opt Imaging & Photoelect Detect Te, Hebei Int Joint Res Ctr Computat Opt Imaging & In, Sch Math & Phys Sci & Engn, Handan 056038, Hebei, Peoples R China
[5] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
[6] Anhui Inst Innovat Ind Technol, Hefei 230088, Anhui, Peoples R China
基金
国家重点研发计划;
关键词
TRANSPORT LAYERS; EFFICIENT;
D O I
10.1039/d5ta01102g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface defects at the interface between the perovskite and the hole transport layer (HTL) inevitably result in significant surface recombination and unfavorable energy level alignment in perovskite solar cells (PSCs). Identifying surface modifiers with enhanced binding affinity to perovskite materials is crucial because of the effective passivation effect. Here we show that the 7-azaindole molecule featuring two active sites acting as an intermediate layer at the perovskite/HTL can not only strongly passivate defects through bidentate chelation, but also enhances intermolecular pi-pi stacking with spiro-OMeTAD, giving rise to effective carrier extraction and favorable energy level alignment. Under the synergistic influence of dual functionalization, the PSCs modified using 7-azaindole achieved a power conversion efficiency (PCE) of 24.63%, and the stability of the encapsulated devices is also greatly improved. For perovskite interfacial engineering, the use of pi-conjugated molecules with two reactive sites emerges as a prospective chemical strategy to enhance PSCs' efficiency and stability.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Bidentate ligand modified CsPbI2Br quantum dots as an interface for high-performance carbon-based perovskite solar cells
    Han, Siqi
    Zhang, Haiming
    Wang, Rufeng
    He, Qingchen
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2021, 131 (131)
  • [22] Enhancing the performance of perovskite solar cells via interface modification
    Qiaoli Niu
    Yunkai Deng
    Daiqi Cui
    Hao Lv
    Xiaomeng Duan
    Zhi Li
    Ze Liu
    Wenjin Zeng
    Ruidong Xia
    Wanyi Tan
    Yong Min
    Journal of Materials Science, 2019, 54 : 14134 - 14142
  • [23] Enhancing the performance of perovskite solar cells via interface modification
    Niu, Qiaoli
    Deng, Yunkai
    Cui, Daiqi
    Lv, Hao
    Duan, Xiaomeng
    Li, Zhi
    Liu, Ze
    Zeng, Wenjin
    Xia, Ruidong
    Tan, Wanyi
    Min, Yong
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (22) : 14134 - 14142
  • [24] Amidinium additives for high-performance perovskite solar cells
    Ma, Yue
    Liu, Na
    Zai, Huachao
    Fan, Rundong
    Kang, Jiaqian
    Yang, Xiaoyan
    Pei, Fengtao
    Zhou, Wentao
    Wang, Hao
    Chen, Yihua
    Wang, Lina
    Hong, Jiawang
    Bai, Yang
    Zhou, Huanping
    Chen, Qi
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (07) : 3506 - 3512
  • [25] Defects engineering for high-performance perovskite solar cells
    Feng Wang
    Sai Bai
    Wolfgang Tress
    Anders Hagfeldt
    Feng Gao
    npj Flexible Electronics, 2
  • [26] Carbon Nanoparticles in High-Performance Perovskite Solar Cells
    Yavari, Mozhgan
    Mazloum-Ardakani, Mohammad
    Gholipour, Somayeh
    Marinova, Nevena
    Delgado, Juan Luis
    Turren-Cruz, Silver-Hamill
    Domanski, Konrad
    Taghavinia, Nima
    Saliba, Michael
    Graetzel, Michael
    Hagfeldt, Anders
    Tress, Wolfgang
    ADVANCED ENERGY MATERIALS, 2018, 8 (12)
  • [27] Defects engineering for high-performance perovskite solar cells
    Wang, Feng
    Bai, Sai
    Tress, Wolfgang
    Hagfeldt, Anders
    Gao, Feng
    NPJ FLEXIBLE ELECTRONICS, 2018, 2 (01)
  • [28] Mechanochemistry Advances High-Performance Perovskite Solar Cells
    Zhang, Yuzhuo
    Wang, Yanju
    Yang, Xiaoyu
    Zhao, Lichen
    Su, Rui
    Wu, Jiang
    Luo, Deying
    Li, Shunde
    Chen, Peng
    Yu, Maotao
    Gong, Qihuang
    Zhu, Rui
    ADVANCED MATERIALS, 2022, 34 (06)
  • [29] Crystallization control via ligand-perovskite coordination for high-performance flexible perovskite solar cells
    Chen, Xin
    Cai, Weilun
    Niu, Tianqi
    Wang, Hui
    Liu, Chou
    Zhang, Zheng
    Du, Yachao
    Wang, Shuang
    Cao, Yang
    Liu, Pengchi
    Huang, Wenliang
    Ma, Chuang
    Yang, Ben
    Liu, Shengzhong
    Zhao, Kui
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (17) : 6256 - 6267
  • [30] Multistage Regulation Strategy via Fluorine-Rich Small Molecules for Realizing High-Performance Perovskite Solar Cells
    Chang, Xiong
    Li, Kunpeng
    Han, Yong
    Wang, Guohua
    Li, Zhishan
    Li, Dongfang
    Li, Fashe
    Zhu, Xing
    Wang, Hua
    Chen, Jiangzhao
    Zhu, Tao
    ADVANCED SCIENCE, 2024,