This study presents a novel variational framework for structural learning in Bayesian networks (BNs), addressing the key limitation of existing Bayesian methods: their lack of scalability to large graphs with many variables. Traditional approaches, such as MCMC and stochastic search, often encounter computational barriers due to the super-exponential growth of the Directed Acyclic Graph (DAG) space. Our method introduces a scalable alternative by leveraging a factorized variational family to approximate the posterior distribution over DAG structures, enabling efficient computation of Bayesian scores and predictive posterior inference. Unlike previous methods, which are constrained by high computational costs or domain-specific limitations, this approach achieves tractability through mean-field variational inference and tractable updating equations, allowing application to significantly larger datasets. Empirical results on benchmark datasets demonstrate that the proposed framework consistently outperforms state-of-the-art methods in terms of scalability and predictive accuracy while maintaining robustness across diverse scenarios. This work represents a key step towards scalable Bayesian structural learning and opens avenues for future research to refine the variational approximation and incorporate advanced parallelization techniques.
机构:
Beijing Univ Sci & Technol, Coll Comp Sci & Technol, Beijing 100083, Peoples R ChinaBeijing Univ Sci & Technol, Coll Comp Sci & Technol, Beijing 100083, Peoples R China
Yang, Cuicui
Ji, Junzhong
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Sci & Technol, Coll Comp Sci & Technol, Beijing 100083, Peoples R ChinaBeijing Univ Sci & Technol, Coll Comp Sci & Technol, Beijing 100083, Peoples R China
Ji, Junzhong
Liu, Jiming
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Baptist Univ, Dept Comp Sci, Kowloon Tong, Hong Kong, Peoples R ChinaBeijing Univ Sci & Technol, Coll Comp Sci & Technol, Beijing 100083, Peoples R China
Liu, Jiming
Liu, Jinduo
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Sci & Technol, Coll Comp Sci & Technol, Beijing 100083, Peoples R ChinaBeijing Univ Sci & Technol, Coll Comp Sci & Technol, Beijing 100083, Peoples R China
Liu, Jinduo
Yin, Baocai
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Sci & Technol, Coll Comp Sci & Technol, Beijing 100083, Peoples R ChinaBeijing Univ Sci & Technol, Coll Comp Sci & Technol, Beijing 100083, Peoples R China
机构:
Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, Sao Paulo, BrazilUniv Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, Sao Paulo, Brazil
Barth, Vitor O.
Caetano, Henrique O.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, Sao Paulo, BrazilUniv Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, Sao Paulo, Brazil
Caetano, Henrique O.
Maciel, Carlos D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, Sao Paulo, BrazilUniv Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, Sao Paulo, Brazil
Maciel, Carlos D.
Aiello, Marco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Stuttgart, Inst Architecture Applicat Syst, Dept Serv Comp, Stuttgart, GermanyUniv Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, Sao Paulo, Brazil
Aiello, Marco
IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS 2024, IEEE EAIS 2024,
2024,
: 200
-
207
机构:
Univ Fed Minas Gerais, Grad Program Elect Engn, Ave Antonio Carlos 6627, BR-31270901 Belo Horizonte, MG, BrazilUniv Fed Minas Gerais, Grad Program Elect Engn, Ave Antonio Carlos 6627, BR-31270901 Belo Horizonte, MG, Brazil
Campos, Joao P. A. F.
Machado, Itallo G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Estadual Minas Gerais, Dept Comp Engn, Ave Parana 3001, BR-35501170 Divinopolis, MG, BrazilUniv Fed Minas Gerais, Grad Program Elect Engn, Ave Antonio Carlos 6627, BR-31270901 Belo Horizonte, MG, Brazil
Machado, Itallo G.
Bessani, Michel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Minas Gerais, Operat Res & Complex Syst Lab, ORCS Lab, Ave Antonio Carlos 6627, BR-31270901 Belo Horizonte, MG, BrazilUniv Fed Minas Gerais, Grad Program Elect Engn, Ave Antonio Carlos 6627, BR-31270901 Belo Horizonte, MG, Brazil