Convergence Analysis for Differentially Private Federated Averaging in Heterogeneous Settings

被引:0
|
作者
Li, Yiwei [1 ]
Wang, Shuai [2 ]
Wu, Qilong [1 ]
机构
[1] Xiamen Univ Technol, Fujian Key Lab Commun Network & Informat Proc, Xiamen 361024, Peoples R China
[2] Univ Elect Sci & Technol China, Natl Key Lab Wireless Commun, Chengdu 611731, Peoples R China
关键词
federated learning; convergence analysis; privacy analysis; data heterogeneity; EDGE NETWORKS;
D O I
10.3390/math13030497
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Federated learning (FL) has emerged as a prominent approach for distributed machine learning, enabling collaborative model training while preserving data privacy. However, the presence of non-i.i.d. data and the need for robust privacy protection introduce significant challenges in theoretically analyzing the performance of FL algorithms. In this paper, we present novel theoretical analysis on typical differentially private federated averaging (DP-FedAvg) by judiciously considering the impact of non-i.i.d. data on convergence and privacy guarantees. Our contributions are threefold: (i) We introduce a theoretical framework for analyzing the convergence of DP-FedAvg algorithm by considering different client sampling and data sampling strategies, privacy amplification and non-i.i.d. data. (ii) We explore the privacy-utility tradeoff and demonstrate how client strategies interact with differential privacy to affect learning performance. (iii) We provide extensive experimental validation using real-world datasets to verify our theoretical findings.
引用
收藏
页数:25
相关论文
共 50 条
  • [11] Differentially Private Federated Knowledge Graphs Embedding
    Peng, Hao
    Li, Haoran
    Song, Yangqiu
    Zheng, Vincent
    Li, Jianxin
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 1416 - 1425
  • [12] Differentially private federated learning with Laplacian smoothing
    Liang, Zhicong
    Wang, Bao
    Gu, Quanquan
    Osher, Stanley
    Yao, Yuan
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2024, 72
  • [13] Differentially Private Federated Learning With Stragglers’ Delays in Cross-Silo Settings: An Online Mirror Descent Approach
    Odeyomi, Olusola
    Tankard, Earl
    Rawat, Danda
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2024, 10 (01) : 308 - 321
  • [14] FLDS: differentially private federated learning with double shufflers
    Qi, Qingqiang
    Yang, Xingye
    Hu, Chengyu
    Tang, Peng
    Su, Zhiyuan
    Guo, Shanqing
    COMPUTER JOURNAL, 2024, : 431 - 443
  • [15] Differentially Private Federated Learning With an Adaptive Noise Mechanism
    Xue, Rui
    Xue, Kaiping
    Zhu, Bin
    Luo, Xinyi
    Zhang, Tianwei
    Sun, Qibin
    Lu, Jun
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 74 - 87
  • [16] Differentially private federated learning framework with adaptive clipping
    Wang F.
    Xie M.
    Li Q.
    Wang C.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (04): : 111 - 112
  • [17] Differentially Private Federated Learning With Importance Client Sampling
    Chen, Lin
    Ding, Xiaofeng
    Li, Mengqi
    Jin, Hai
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 3635 - 3649
  • [18] Differentially Private Byzantine-Robust Federated Learning
    Ma, Xu
    Sun, Xiaoqian
    Wu, Yuduo
    Liu, Zheli
    Chen, Xiaofeng
    Dong, Changyu
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (12) : 3690 - 3701
  • [19] Distributionally Robust Federated Learning for Differentially Private Data
    Shi, Siping
    Hu, Chuang
    Wang, Dan
    Zhu, Yifei
    Han, Zhu
    2022 IEEE 42ND INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2022), 2022, : 842 - 852
  • [20] Evaluating the Impact of Mobility on Differentially Private Federated Learning
    Kim, Eun-ji
    Lee, Eun-Kyu
    APPLIED SCIENCES-BASEL, 2024, 14 (12):