Quantum Machine Learning: Perspectives in Cybersecurity

被引:0
|
作者
Pastorello, Davide [1 ,2 ]
机构
[1] Univ Bologna, Dept Math, Piazza Porta San Donato 5, I-40126 Bologna, Italy
[2] TIFPA INFN, Via Sommarive 14, I-38123 Povo, TN, Italy
来源
COMPUTER SAFETY, RELIABILITY, AND SECURITY. SAFECOMP 2024 WORKSHOPS | 2024年 / 14989卷
关键词
Quantum machine learning; cybersecurity; data corruption; gradient masking;
D O I
10.1007/978-3-031-68738-9_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we give an overview on some recent results related to quantum machine learning (QML) regarding the training of quantum generative adversarial neural networks by means of classical shadows, and a parametric model implemented on a quantum annealer. Then, we argue that QML models can be robust against targeted data corruption and gradient-based attacks, motivating the exploration of the relationship between QML and cybersecurity.
引用
收藏
页码:266 / 274
页数:9
相关论文
共 50 条
  • [41] Machine Learning and Big Data for Cybersecurity: Systematic Literature Review
    El Bouchtioui, En Naji
    Bentaleb, Asmae
    Abouchabaka, Jaafar
    DIGITAL TECHNOLOGIES AND APPLICATIONS, ICDTA 2024, VOL 1, 2024, 1098 : 97 - 106
  • [42] A Literature Review of Machine Learning Techniques for Cybersecurity in Data Centers
    Roponena, Evita
    Kampars, Janis
    Gailitis, Andris
    2021 62ND INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND MANAGEMENT SCIENCE OF RIGA TECHNICAL UNIVERSITY (ITMS), 2021,
  • [43] Cybersecurity data science: an overview from machine learning perspective
    Iqbal H. Sarker
    A. S. M. Kayes
    Shahriar Badsha
    Hamed Alqahtani
    Paul Watters
    Alex Ng
    Journal of Big Data, 7
  • [44] Cybersecurity data science: an overview from machine learning perspective
    Sarker, Iqbal H.
    Kayes, A. S. M.
    Badsha, Shahriar
    Alqahtani, Hamed
    Watters, Paul
    Ng, Alex
    JOURNAL OF BIG DATA, 2020, 7 (01)
  • [45] Leveraging machine learning for enhanced cybersecurity: an intrusion detection system
    Sahib, Wurood Mahdi
    Alhuseen, Zainab Ali Abd
    Saeedi, Iman Dakhil Idan
    Abdulkadhem, Abdulkadhem A.
    Ahmed, Ali
    SERVICE ORIENTED COMPUTING AND APPLICATIONS, 2024, : 107 - 124
  • [46] Training a Quantum Annealing Based Restricted Boltzmann Machine on Cybersecurity Data
    Dixit, Vivek
    Selvarajan, Raja
    Aldwairi, Tamer
    Koshka, Yaroslav
    Novotny, Mark A.
    Humble, Travis S.
    Alam, Muhammad A.
    Kais, Sabre
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2022, 6 (03): : 417 - 428
  • [47] Cybersecurity Attack Detection Model, Using Machine Learning Techniques
    Avci, Isa
    Koca, Murat
    ACTA POLYTECHNICA HUNGARICA, 2023, 20 (07) : 29 - 44
  • [48] Evaluating the potential of quantum machine learning in cybersecurity: A case-study on PCA-based intrusion detection systems
    Bellante, Armando
    Fioravanti, Tommaso
    Carminati, Michele
    Zanero, Stefano
    Luongo, Alessandro
    COMPUTERS & SECURITY, 2025, 154
  • [50] Federated Quantum Machine Learning
    Chen, Samuel Yen-Chi
    Yoo, Shinjae
    ENTROPY, 2021, 23 (04)