Geophysical Frequency Domain Electromagnetic Field Simulation Using Physics-Informed Neural Network

被引:0
|
作者
Wang, Bochen [1 ,2 ]
Guo, Zhenwei [1 ,2 ]
Liu, Jianxin [1 ,2 ]
Wang, Yanyi [1 ,2 ]
Xiong, Fansheng [3 ]
机构
[1] Cent South Univ, Sch Geosci & Info Phys, Changsha 410083, Peoples R China
[2] Hunan Key Lab Nonferrous Resources & Geol Hazard E, Changsha 410083, Peoples R China
[3] Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing 101408, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; geophysical electromagnetic fields; frequency domain; Maxwell's equations; physics-informed neural network; 86-10; 3-D; INVERSION; FRAMEWORK;
D O I
10.3390/math12233873
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Simulating electromagnetic (EM) fields can obtain the EM responses of geoelectric models at different times and spaces, which helps to explain the dynamic process of EM wave propagation underground. EM forward modeling is regarded as the engine of inversion. Traditional numerical methods have certain limitations in simulating the EM responses from large-scale geoelectric models. In recent years, the emerging physics-informed neural networks (PINNs) have given new solutions for geophysical EM field simulations. This paper conducts a preliminary exploration using PINN to simulate geophysical frequency domain EM fields. The proposed PINN performs self-supervised training under physical constraints without any data. Once the training is completed, the responses of EM fields at any position in the geoelectric model can be inferred instantly. Compared with the finite-difference solution, the proposed PINN performs the task of geophysical frequency domain EM field simulations well. The proposed PINN is applicable for simulating the EM response of any one-dimensional geoelectric model under any polarization mode at any frequency and any spatial position. This work provides a new scenario for the application of artificial intelligence in geophysical EM exploration.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] FD-PINN: FREQUENCY DOMAIN PHYSICS-INFORMED NEURAL NETWORK
    Song J.
    Cao W.
    Zhang W.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2023, 55 (05): : 1195 - 1205
  • [2] Indoor airflow field reconstruction using physics-informed neural network
    Wei, Chenghao
    Ooka, Ryozo
    BUILDING AND ENVIRONMENT, 2023, 242
  • [3] Multi-layer thermal simulation using physics-informed neural network
    Peng, Bohan
    Panesar, Ajit
    ADDITIVE MANUFACTURING, 2024, 95
  • [4] Solving elastodynamics via physics-informed neural network frequency domain method
    Liang, Ruihua
    Liu, Weifeng
    Xu, Lihui
    Qu, Xiangyu
    Kaewunruen, Sakdirat
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 258
  • [5] Predicting ocean pressure field with a physics-informed neural network
    Yoon, Seunghyun
    Park, Yongsung
    Gerstoft, Peter
    Seong, Woojae
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 155 (03): : 2037 - 2049
  • [6] Transfer learning-based physics-informed neural networks for magnetostatic field simulation with domain variations
    Lippert, Jonathan Rainer
    von Tresckow, Moritz
    De Gersem, Herbert
    Loukrezis, Dimitrios
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2024, 37 (04)
  • [7] Physics-Informed Neural Networks with Data and Equation Scaling for Time Domain Electromagnetic Fields
    Fujita, Kazuhiro
    2022 ASIA-PACIFIC MICROWAVE CONFERENCE (APMC), 2022, : 623 - 625
  • [8] A More General Electromagnetic Inverse Scattering Method Based on Physics-Informed Neural Network
    Hu, Yi-Di
    Wang, Xiao-Hua
    Zhou, Hui
    Wang, Lei
    Wang, Bing-Zhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [9] Development of a data-driven simulation framework using physics-informed neural network
    Chae, Young Ho
    Kim, Hyeonmin
    Bang, Jungjin
    Seong, Poong Hyun
    ANNALS OF NUCLEAR ENERGY, 2023, 189
  • [10] Parameter identification for a damage phase field model using a physics-informed neural network
    Rojas, Carlos J. G.
    Boldrini, Jos L.
    Bittencourt, Marco L.
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2023, 13 (03)