Study on Long-Term Stability of Lined Rock Cavern for Compressed Air Energy Storage

被引:0
|
作者
Liu, Shaohua [1 ,2 ]
Zhang, Duoxin [3 ]
机构
[1] Ningbo Univ, Inst Rock Mech, Ningbo 315000, Peoples R China
[2] Ningbo Univ, Ningbo Key Lab Energy Geostruct, Ningbo 315000, Peoples R China
[3] North China Univ Water Resources & Elect Power, Coll Civil Engn & Commun, Zhengzhou 450000, Peoples R China
关键词
compressed air energy storage; lined rock cavern; damage variable of rock mass; plastic zone; LOW-CYCLE FATIGUE; CONSTITUTIVE MODEL; DAMAGE MODEL; PERFORMANCE;
D O I
10.3390/en17235908
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A rock mass is mainly subjected to a high internal pressure load in the lined rock cavern (LRC) for compressed air energy storage (CAES). However, under the action of long-term cyclic loading and unloading, the mechanical properties of a rock mass will deteriorate, affecting the long-term stability of the cavern. The fissures in the rock mass will expand and generate new cracks, causing varying degrees of damage to the rock mass. Most of the existing studies are based on the test data of complete rock samples and the fissures in the rock mass are ignored. In this paper, the strain equivalence principle is used to couple the initial damage variable caused by the fissures and the fatigue damage variable of a rock mass to obtain the damage variable of a rock mass under cyclic stress. Then, based on the ANSYS 17.0 platform, the ANSYS Parametric Design Language (APDL) is used to program the rock mass elastic modulus evolution equation, and a calculation program of the rock mass damage model is secondarily developed. The calculation program is verified by a cyclic loading and unloading model test. It is applied to the construction project of underground LRC for CAES in Northwest China. The calculation results show that the vertical radial displacement of the rock mass is 8.39 mm after the 100th cycle, which is a little larger than the 7.53 mm after the first cycle. The plastic zone of the rock mass is enlarged by 4.71 m2, about 11.49% for 100 cycles compared to the first cycle. Our calculation results can guide the design and calculation of the LRC, which is beneficial to the promotion of the CAES technology.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Stability Analysis on the Long-Term Operation of the Horizontal Salt Rock Underground Storage
    Zhang, Chengzhong
    Zhang, Qiang
    Li, Weiwei
    Song, Zhanping
    Wang, Junbao
    ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [32] Theoretical analysis of cavern-related exergy losses for compressed air energy storage systems
    White, Alexander J.
    JOURNAL OF ENERGY STORAGE, 2024, 81
  • [33] The investigation on a hot dry rock compressed air energy storage system
    Liu, Xueling
    Zhong, Lisha
    Wang, Jiansheng
    ENERGY CONVERSION AND MANAGEMENT, 2023, 291
  • [34] Feasibility analysis on the debrining for compressed air energy storage salt cavern with sediment
    Xie, Dongzhou
    Jiang, Tingting
    Ren, Gaofeng
    Chi, Ziqi
    Cao, Dongling
    He, Tao
    Liao, Youqiang
    Zhang, Yixuan
    RENEWABLE ENERGY, 2024, 237
  • [35] Temperature Regulation Model and Experimental Study of Compressed Air Energy Storage Cavern Heat Exchange System
    Li, Peng
    Chen, Zongguang
    Zhou, Xuezhi
    Chen, Haisheng
    Wang, Zhi
    SUSTAINABILITY, 2022, 14 (11)
  • [36] Compressed air energy storage in hard rock caverns:airtight performance,thermomechanical behavior and stability
    Zhang, Guohua
    Wang, Xinjin
    Xiang, Yue
    Pan, Jia
    Xiong, Feng
    Hua, Dongjie
    Tang, Zhicheng
    Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2024, 43 (11): : 2601 - 2626
  • [37] Numerical and experimental investigations of concrete lined compressed air energy storage system
    Li, Peng
    Kang, Huan
    Zhu, Qing
    Wu, Yang
    Zhang, Jing
    Fan, Liyang
    Wang, Zhi
    JOURNAL OF CLEANER PRODUCTION, 2023, 390
  • [38] Drying of a porous spherical rock for compressed air energy storage
    Dayan, A
    Flesh, J
    Saltiel, C
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (19-20) : 4459 - 4468
  • [39] Cyclic Thermo-Mechanical Analysis of Wellbore in Underground Compressed Air Energy Storage Cavern
    Mohanto S.
    Singh K.
    Chakraborty T.
    Basu D.
    Geotechnical and Geological Engineering, 2014, 32 (03) : 601 - 616
  • [40] A review of thermal energy storage in compressed air energy storage system
    Zhou, Qian
    Du, Dongmei
    Lu, Chang
    He, Qing
    Liu, Wenyi
    ENERGY, 2019, 188