Convergence of Tandem Catalysis and Nanoconfinement Promotes Electroreduction of CO2 to C2 Products

被引:0
|
作者
Dai, Jiawei [1 ]
Zhu, Deyu [1 ]
Xu, You [1 ]
Zhu, Jiannan [1 ]
Liu, Xiaoling [1 ]
Xu, Guichan [1 ]
Wang, Zhengyun [1 ]
Chen, Rong [2 ]
Liu, Hongfang [1 ]
Li, Guangfang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Key Lab Mat Chem Energy Convers & Storage, Hubei Key Lab Mat Chem & Serv Failure, Sch Chem & Chem Engn,Minist Educ, Wuhan 430074, Peoples R China
[2] Wuhan Text Univ, State Key Lab New Text Mat & Adv Proc Technol, Wuhan 430200, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
electroreduction CO2; nanoconfinement; tandem catalysis; Cu2O@Ag nanoshell; *CO enrichment; multicarbon; ELECTROCHEMICAL REDUCTION; PH-DEPENDENCE; SELECTIVITY; INSIGHTS;
D O I
10.1021/acsami.4c17083
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
An efficient electrocatalytic conversion of CO2 into valuable multicarbon (C2+) products requires enhanced C-C coupling of C1 intermediates. Herein, we combine a tandem effect with a confinement strategy to construct a hollow Cu2O@Ag nanoshell electrocatalyst with a well-defined porous structure to improve the *CO intermediate coverage on the catalyst surface. In CO2 electroreduction, in situ Raman spectroscopy shows that the introduction of Ag can not only promote the CO intermediate production but also improve the stability of Cu+ to capture the *CO intermediate due to a CO-tandem effect, and the fine-tuned hollowness degree and pore size of Cu2O@Ag create a spatially confined microenvironment for trapping CO2 as well as the enrichment of CO, which greatly facilitate subsequent C-C coupling for C2+ product. The optimized Cu2O@Ag-45 with a specific nanoconfinement exhibits an enhanced ethylene (C2H4) production under the wide potential range from -0.4 to -1.2 V (vs RHE), and a Faradaic efficiency of 55.4% for C2+ products could be achieved at -1.2 V (vs RHE). This study highlights a promising strategy for the electrochemical reduction of CO2 to C2+ products on efficient C-C coupling catalysts.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Intermediate enrichment effect of porous Cu catalyst for CO2 electroreduction to C2 fuels
    Liu, Bao
    Cai, Chao
    Yang, Baopeng
    Chen, Kejun
    Long, Yan
    Wang, Qiyou
    Wang, Shuandi
    Chen, Guozhu
    Li, Hongmei
    Hu, Junhua
    Fu, Junwei
    Liu, Min
    ELECTROCHIMICA ACTA, 2021, 388
  • [42] Experimental Demonstration of Topological Catalysis for CO2 Electroreduction
    Kong, Xiangdong
    Liu, Zhao
    Geng, Zhigang
    Zhang, An
    Guo, Ziyang
    Cui, Shengtao
    Xia, Chuan
    Tan, Shijing
    Zhou, Shiming
    Wang, Zhengfei
    Zeng, Jie
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (10) : 6536 - 6543
  • [43] Progress in the Mechanisms and Materials for CO2 Electroreduction toward C2+ Products
    Yang, Yan
    Zhang, Yun
    Hu, Jin-Song
    Wan, Li-Jun
    ACTA PHYSICO-CHIMICA SINICA, 2020, 36 (01)
  • [44] Cu2O Nanoparticles Wrapped by N-Doped Carbon Nanotubes for Efficient Electroreduction of CO2 to C2 Products
    Liu, Jilin
    Yu, Kai
    Zhu, Qianlong
    Qiao, Zhiyuan
    Zhang, Hong
    Jiang, Jie
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (30) : 36135 - 36142
  • [45] Asymmetric Cu Sites for Enhanced CO2 Electroreduction to C2+ Products
    Guo, Weiwei
    Tan, Xingxing
    Jia, Shunhan
    Liu, Shoujie
    Song, Xinning
    Ma, Xiaodong
    Wu, Limin
    Zheng, Lirong
    Sun, Xiaofu
    Han, Buxing
    CCS CHEMISTRY, 2024, 6 (05): : 1231 - 1239
  • [46] Nanoreactor Confined and Enriched Intermediates for Electroreduction of CO2 to C2+ Products
    Cao, Yucheng
    Jia, Chunmei
    Fan, Wenjun
    Li, Jiangnan
    Zhang, Fuxiang
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (26)
  • [47] Lattice Strain Engineering Boosts CO2 Electroreduction to C2+ Products
    Jiao, Jiapeng
    Kang, Xinchen
    Yang, Jiahao
    Jia, Shuaiqiang
    Chen, Xiao
    Peng, Yaguang
    Chen, Chunjun
    Xing, Xueqing
    Chen, Zhongjun
    He, Mingyuan
    Wu, Haihong
    Han, Buxing
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (38)
  • [48] A Stable Metal-azolate Framework with Cyclic Tetracopper(I) Clusters for Highly Selective Electroreduction of CO2 to C2 Products
    Liu, Yuan-Yuan
    Wang, Zhi-Shuo
    Liao, Pei-Qin
    Chen, Xiao-Ming
    CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (21)
  • [49] Stabilizing Cu0-Cu+ sites by Pb-doping for highly efficient CO2 electroreduction to C2 products
    Ma, Xiaodong
    Song, Xinning
    Zhang, Libing
    Wu, Limin
    Feng, Jiaqi
    Jia, Shunhan
    Tan, Xingxing
    Xu, Liang
    Sun, Xiaofu
    Han, Buxing
    GREEN CHEMISTRY, 2023, 25 (19) : 7635 - 7641
  • [50] Toward efficient catalysts for electrochemical CO2 conversion to C2 products
    Kuo, Luke
    Dinh, Cao-Thang
    CURRENT OPINION IN ELECTROCHEMISTRY, 2021, 30